ラマンベースの機械学習プラットフォームがIDHmutとIDHwtのグリオーマ間のユニークな代謝差異を明らかにする

ラマン分光法と機械学習プラットフォームに基づくIDH変異型と野生型膠芽腫細胞の代謝差異研究 背景紹介 膠芽腫の診断と治療において、フォルマリン固定、パラフィン包埋(FFPE)組織切片が広く使用されています。しかし、包埋媒体の背景ノイズの影響を受け、FFPE組織はラマン分光法に基づく研究に限られた応用しかされていません。この問題を克服し、腫瘍サブタイプを識別するために、我々の研究チームは新しいラマン分光法に基づく機械学習プラットフォーム「APOLLO (悪性膠芽腫のラマン分光法病理学)」を開発しました。これはFFPE組織切片から膠芽腫のサブタイプを予測できるプラットフォームです。 論文の出典 本論文は、Adrian Lita、Joel Sjöberg、David Păcioianuらの学者によ...

個別化した猫の脊髄刺激モデリングのための新しいCNNベースの画像セグメンテーションパイプライン

卷積ニューラルネットワーク(CNN)に基づく画像分割パイプラインを用いた個体化された猫の脊髄刺激モデリング 背景と研究動機 脊髓刺激(Spinal Cord Stimulation, SCS)は、慢性疼痛管理に広く使用されている治療法です。近年、SCは神経活動を調節し、失われた自律または感覚運動機能を回復させるためにも使用されています。個別化されたモデリングと治療計画は、SCを安全かつ効果的に行うための重要な側面です。しかし、必要な詳細さと精度のあるスパイン模型の生成には、人間の専門家による時間のかかる手動の画像分割が必要となります。したがって、限られたデータでも高品質の解剖学的モデルを生成できるよう、自動化された分割アルゴリズムが切実に求められています。 論文の出典 本論文は、Alessa...

機械学習と組合化学を使用したmRNA送達のための可イオン化脂質発見の加速

机器学習と組合せ化学を利用してmRNA送達のための可イオン化脂質の発見を加速する 研究背景 メッセンジャーRNA(mRNA)治療の潜在能力を最大限に引き出すためには、脂質ナノ粒子(LNPs)のツールキットを拡張することが重要です。しかし、LNPs開発の主要なボトルネックは、新しい可イオン化脂質を識別することである。既存の研究では、LNPsが特定の組織または細胞にmRNAを送達するのに顕著な効果を示していることが明らかにされています。クラシックなLNPsの処方は通常、イオン化脂質、コレステロール、補助脂質、及びポリエチレングリコール化脂質(PEG脂質)から構成されており、特にイオン化脂質はmRNAの積載及びエンドソームからの逃避において重要な役割を果たしている。 近年、LNPsは臨床応用の分野...

サポートテンソルマシンの加速のための逐次安全静的および動的スクリーニングルール

在データ取得技術の絶え間ない発展によって、多様な特徴を含む大量の高次元データを取得することが非常に容易になっています。例えば、画像やビジュアルデータなどがそうです。しかし、従来の機械学習方法、特にベクトルや行列に基づく手法は、次元の災害、計算の複雑度の増加、およびモデルの過適合といった課題に直面しています。これらの問題を解決するために、テンソルという多次元配列の表現方法がベクトルや行列よりも柔軟性が高く、高次元データをうまく処理できるため、テンソルに基づく機械学習手法が学術研究の焦点となっています。 サポートテンソルマシン (Support Tensor Machine, STM) は効果的なテンソル分類手法であり、サポートベクトルマシン (Support Vector Machine, S...

車輪付き脚ロボットのための堅牢な自律ナビゲーションと移動学習

車輪付き脚ロボットのための堅牢な自律ナビゲーションと移動学習

自律的に移動できる車輪脚ロボット 背景紹介 都市化の進展に伴い、サプライチェーン物流、特にラストワンマイルの配送が大きな課題となっています。交通の混雑が増加し、より迅速な配送サービスが求められる中、特に屋内や街路での複雑なルートは配送にとって解決し難い問題となっています。従来の車輪型ロボットは複雑な障害物を越えるのが難しく、脚部システムだけでは必要な速度と効率を達成することはできません。例えば、ANYmalロボットは一定の移動能力を持っているものの、その最大走行速度は平均的な歩行速度の半分に過ぎず、バッテリーの持続時間も限られています。したがって、平坦な地面で効率的に動き、障害物を乗り越えることができるロボットシステムを開発することが研究の主要な方向となっています。 本稿で主要に研究している...