基于全方位液滴振动采集的漂浮式发电机

基于全方位液滴振动采集的漂浮式发电机

漂浮式全向液滴振动发电器:突破性研究 学术背景 随着物联网(IoT)设备在海洋环境监测中的广泛应用,如何在不依赖电网的情况下为这些设备提供稳定电力成为了一个亟待解决的问题。传统的风力、太阳能等可再生能源在海洋环境中存在局限性,而摩擦电纳米发电机(Triboelectric Nanogenerator, TENG)因其高效的机械能转换能力被认为是一种有潜力的解决方案。然而,现有的TENG设备大多依赖于固体-固体界面摩擦,存在磨损问题,限制了其长期使用。此外,许多液滴基TENG只能单向收集能量,无法适应海洋环境中不可预测的多向波动。 为了解决这些问题,研究团队提出了一种基于液滴的全向振动发电器(Floating Droplet-based Electricity Generator, FDEG)...

基于内存计算的深度贝叶斯主动学习研究

随着人工智能(AI)技术的快速发展,深度学习在复杂任务中取得了显著进展。然而,深度学习的成功在很大程度上依赖于大量标注数据,而数据的标注过程不仅耗时、劳动密集,还需要专业的领域知识,成本高昂。特别是在一些专业领域中,如机器人技能学习、催化剂发现、药物发现和蛋白质生产优化等,获取标注数据的难度和成本尤其突出。为了解决这一问题,深度贝叶斯主动学习(Deep Bayesian Active Learning, DBAL)应运而生。DBAL通过主动选择最有信息量的数据进行标注,显著提高了标注效率,从而在有限标注数据的情况下实现高质量的学习。 然而,DBAL的实现面临着一个重要的技术挑战:它需要处理大量的随机变量和高带宽的数据传输,这对传统的确定性硬件提出了极高的要求。传统的互补金属氧化物半导体(Co...

基于多目标进化优化的移民重新安置问题研究

通过多目标进化优化解决移民安置问题的新框架研究报告 在全球化进程加速和不断变化的社会经济背景下,移民(migrants)现象已经成为一种不可忽视的全球趋势。不管是出于人道主义救助的角度,还是从全球化经济的可持续发展出发,有效地管理和安置移民已成为一个复杂的重要课题。据统计,截止2019年,国际移民的总数已达到2.72亿人,呈现出大幅超出先前预测的增长趋势,并且这一现象在未来还将持续。然而,与此同时,移民安置过程中也面临着诸多挑战:如何提升移民的就业率以及如何合理分配移民至合适的定居点?这些问题的答案对移民本身、对东道国、乃至整个社会的经济与文化福祉都有重要影响。 基于这一全球性问题,本研究由南京大学、Peng Cheng实验室及Southern University of Science a...

混合环境中基于关系图学习的强化学习多智能体协作导航

多智能体混合环境协作导航研究:基于关系图学习的强化学习新方法 移动机器人技术正随着人工智能领域的发展迎来应用热潮,其中导航能力是移动机器人研究的核心热点之一。传统导航方法在面对动态环境、障碍物规避以及多机器人协作任务时,往往面临算法复杂度、计算资源消耗以及模型普适性的问题。针对这些问题,来自Central South University与Zhejiang University of Technology的研究团队提出了一种基于关系图注意力网络(Graph Attention Network, GAT)的新方法,称为GAR-CoNav,为混合环境中的多目标协作导航问题(Multi-Robot Cooperative Navigation Problem, MCNP)提供了新的解决方案。这篇发...

自适应复合固定时间强化学习优化的非线性系统控制及其在智能船舶自动驾驶上的应用

智能船舶自动驾驶的非线性固定时间强化学习优化控制研究 近年来,智能自动驾驶技术逐渐成为自动化控制领域的研究热点之一。在复杂的非线性系统中,优化控制策略的设计,尤其是在固定时间内实现系统稳定性和性能优化方面,是控制工程师和研究人员面临的重要挑战之一。然而,现有的固定时间控制理论在实现系统状态收敛时,往往忽略了资源利用效率和平衡问题,这可能导致过度补偿或欠补偿的现象,从而使系统的稳态误差增加。此外,对于如何在时间限定内实现非线性不确定性估计误差的最小化,相关研究依然较少。因此,本研究旨在提出一种自适应复合固定时间强化学习优化控制解决方案,进一步解决这一关键问题。 研究背景及目的 固定时间控制理论自提出以来,由于收敛时间不依赖于初始状态的特点,其应用得到了广泛关注。相比有限时间控制方法,固定时间控...