基于注意力机制的多层子词联合学习的中文词嵌入研究

学术背景 近年来,中文词向量(Chinese Word Embedding)在自然语言处理(Natural Language Processing, NLP)领域引起了广泛关注。与英语不同,中文的字符结构复杂且多样,这为语义表示带来了独特的挑战。传统的词向量模型(如Word2Vec)在处理中文时,往往无法充分捕捉汉字内部的细微语义信息,尤其是忽略了不同层次的子词信息对语义的贡献差异。例如,汉字由笔画、部首、拼音等多个子成分构成,这些子成分在不同语境下对语义的理解起着重要作用。然而,现有的模型在处理这些信息时,往往采用统一的方式,未能有效区分各子成分的权重。 为了解决这一问题,本文提出了一种基于权重的中文词向量模型,该模型将中文词的内部结构分为六个层次的子词信息:词、字、部件、拼音、笔画和结构...

利用图卷积网络进行多视角非图数据的半监督学习

背景介绍 在机器学习领域,半监督学习(Semi-Supervised Learning, SSL)因其能够利用少量标注数据和大量未标注数据进行学习而备受关注。特别是在数据标注成本高昂的场景中,基于图的半监督学习方法逐渐成为研究热点。图卷积网络(Graph Convolutional Networks, GCNs)在半监督学习中表现出色,尤其是在具有图结构的数据(如引文网络和社交网络)中。然而,GCNs在非图结构的多视图数据(如图像集合)中的应用仍存在明显空白。 多视图数据(Multi-view Data)是指从不同视角或模态捕捉同一对象信息的数据集。例如,电视数据包含视频和音频两个视图,自然语言理解中同一语义对象可以用不同语言表达,人脸识别中2D图像和3D模型代表不同模态的面部数据。多视图学...

大型语言模型作为情感支持对话系统的全面比较研究

学术背景 近年来,随着大型语言模型(LLMs, Large Language Models)的快速发展,其在自然语言处理(NLP, Natural Language Processing)领域的应用越来越广泛。LLMs 如 ChatGPT 和 LLaMA 等,展现了强大的语言生成和理解能力,甚至在情感表达和同理心方面也表现出色。情感支持对话系统(ESDS, Emotional Support Dialogue Systems)旨在通过对话传达理解、同情、关怀和支持,帮助他人应对情感困扰、压力或挑战。然而,尽管 LLMs 在情感对话中展现了潜力,但它们在提供有效情感支持方面的能力尚未得到全面评估。 本研究旨在探讨 LLMs 是否能够作为情感支持对话系统的核心框架,并评估其在情感支持策略和语言使...

一种新的图片模糊集相似性度量及其应用

学术背景 在决策分析、模式识别和医疗诊断等领域,模糊集理论为处理不确定性和模糊性提供了重要的数学工具。传统的模糊集(Fuzzy Set, FS)和直觉模糊集(Intuitionistic Fuzzy Set, IFS)在处理复杂数据时存在一定的局限性,尤其是在需要考虑中立性(neutrality)的情况下。图片模糊集(Picture Fuzzy Set, PFS)作为一种扩展的模糊集理论,引入了中立性这一维度,能够更全面地描述现实世界中的模糊信息。然而,现有的PFS相似度度量方法在处理某些问题时存在不合理的结果,例如无法满足公理要求、计算不同PFS之间的相似度时产生矛盾,以及在模式分类中表现不佳。为了解决这些问题,本文提出了一种基于逆切函数的新型PFS相似度度量方法,并展示了其在分类和医疗诊...

基于EPDTNet + -EM的医学图像诊断高级迁移学习与子网架构

学术背景 在当今的医疗环境中,医学影像在疾病诊断、治疗规划和健康管理中扮演着至关重要的角色。然而,传统的医学影像分析方法存在诸多挑战,如过拟合(overfitting)、计算成本高、泛化能力有限以及噪声、尺寸和形状变化等问题。这些挑战导致医学影像的分类和检测精度受限,影响了临床决策的准确性和效率。 为了应对这些挑战,研究者们提出了多种基于机器学习和深度学习的医学影像分析方法。然而,这些方法在处理复杂数据集时仍存在局限性,尤其是在计算效率和分类精度方面。因此,本文提出了一种名为EPDTNet+-EM(Efficient Parallel Deep Transfer Subnet + Explainable Model)的新型医学影像处理框架,旨在通过增强的迁移学习和并行子网架构,提高医学影像中...

利用EEG数据增强痴呆症检测的脑叶生物标志物研究

背景介绍 痴呆症是一种全球性的健康问题,严重影响患者的生活质量,并给医疗系统带来巨大负担。阿尔茨海默病(Alzheimer’s Disease, AD)和额颞叶痴呆(Frontotemporal Dementia, FTD)是痴呆症的两种常见类型,它们的症状有重叠,导致准确诊断和针对性治疗开发尤为困难。早期检测和准确诊断对于有效管理痴呆症至关重要。传统的诊断方法,如临床评估和神经影像技术(MRI、PET扫描),虽然有效,但成本高、耗时长且不易普及。因此,研究人员开始探索非侵入性、成本效益高的替代方法,如脑电图(Electroencephalography, EEG)。 EEG通过头皮上的电极捕捉大脑的电活动,具有高时间分辨率、成本低且易于使用的特点。痴呆症患者的大脑功能变化可以通过EEG信号...