神经群体活动的时间动态约束

神经群体活动的时间动力学约束:脑机接口揭示的神经计算机制 学术背景 大脑的神经活动如何随时间演化,是理解感知、运动和认知功能的核心问题之一。长期以来,神经网络模型认为,大脑的计算过程涉及由网络连接塑造的神经活动时间进程。这一观点提出了一个关键预测:神经活动的时间进程应该是难以违反的。然而,这一预测在实际的生物学神经网络中是否成立,尚未得到直接验证。为了回答这一问题,研究人员利用脑机接口(Brain-Computer Interface, BCI)技术,挑战猴子违反其运动皮层中自然出现的神经群体活动时间进程,包括尝试以时间反转的方式遍历这些活动进程。通过这一实验,研究团队试图验证神经活动的时间进程是否反映了底层网络的计算机制,并探讨这些进程是否可以被人为改变。 论文来源 这篇论文由 Emily...

神经网络中关系学习与快速知识重组的神经机制

神经机制与关系学习:神经网络中的快速知识重组 背景介绍 人类和动物具备一种惊人的能力,能够从有限的经验中学习项目之间的关系(如刺激、物体和事件),从而实现结构化泛化和快速信息整合。这种关系学习的一个基本类型是顺序学习,它使得个体能够进行传递性推理(例如,若a > b且b > c,则a > c)以及列表链接(例如,a > b > c和d > e > f在得知c > d后迅速重组为a > b > c > d > e > f)。尽管这一领域已有长期研究,但传递性推理和快速知识重组的神经生物学机制仍然不明确。本文通过赋予神经网络以神经调制的突触可塑性(允许自我导向学习)并通过人工元学习(学习如何学习)来识别这些机制,展示了神经网络如何执行传递性推理和列表链接,并进一步表达了在人类和动物中广泛观察到的...

基于丰富归纳偏见的视觉语言模型学习

Learning with Enriched Inductive Biases for Vision-Language Models 研究背景与问题提出 近年来,视觉-语言模型(Vision-Language Models, VLMs)在计算机视觉和自然语言处理领域取得了显著进展。这些模型通过大规模图像-文本对进行预训练,能够构建统一的多模态表示空间,从而在多种下游任务中表现出色。然而,在少样本学习(few-shot learning)场景下,如何有效地调整这些模型以适应特定任务,同时保持良好的泛化能力,仍然是一个亟待解决的问题。 现有方法通常依赖于提示工程(prompt engineering)或参数高效微调(Parameter-Efficient Fine-Tuning, PEFT)策略...

基于关键点交互Transformer的结构依赖学习用于通用哺乳动物姿态估计

通用哺乳动物姿态估计的研究进展 研究背景与问题提出 在计算机视觉领域,姿态估计是一项基础且重要的任务,其目标是定位图像中目标对象的关键点位置。近年来,人类姿态估计取得了显著进展,但动物姿态估计(Animal Pose Estimation)的研究仍处于初步阶段。相比于人类姿态估计,动物姿态估计面临更大的挑战,主要体现在以下几个方面: 物种多样性:不同物种之间的外观和姿态差异巨大,例如猫科动物中的豹和家猫在外形、大小和颜色上存在显著区别。 数据稀缺性:现有的动物姿态数据集规模远小于人类姿态数据集。例如,最大的哺乳动物姿态数据集AP-10k包含约10,000张图像,而COCO数据集则包含超过200,000张标注图像。 姿态变化复杂性:动物的姿态变化范围更大,例如羚羊站立时的鼻子与眼睛距离较近,而...

Seaformer++:用于移动视觉识别的增强型轴向Transformer架构

SEAFormer++——为移动视觉识别设计的高效Transformer架构 研究背景与问题提出 近年来,计算机视觉领域经历了从卷积神经网络(CNN)到基于Transformer的方法的重大转变。然而,尽管Vision Transformer在许多任务中表现出卓越的全局上下文建模能力,其高昂的计算成本和内存需求使其难以部署在移动设备上,尤其是处理高分辨率图像时。为了满足移动设备对低延迟和高效性能的需求,研究者们提出了多种轻量化方法,例如局部注意力机制、轴向注意力(Axial Attention)和动态图消息传递等。但这些方法仍无法充分解决高分辨率输入下的高延迟问题。 针对这一挑战,Qiang Wan等人提出了Squeeze-Enhanced Axial Transformer(SEAForm...

更小但更好:用更小的大型语言模型统一布局生成

统一布局生成研究新突破:更小但更强的大语言模型 研究背景与问题提出 布局生成(Layout Generation)是计算机视觉和人机交互领域的重要研究方向,旨在通过算法自动生成符合特定需求的图形界面或排版设计。例如,科学文章、应用程序界面(App UI)、杂志页面以及幻灯片的设计都需要高效且灵活的布局生成方法。然而,传统方法通常针对单一任务或单一领域进行优化,缺乏跨任务和跨领域的通用性。随着深度学习技术的发展,基于Transformer架构的方法逐渐成为主流,但仍面临模型复杂度高、计算成本大等问题。 近年来,大语言模型(Large Language Models, LLMs)在自然语言处理(NLP)领域取得了显著进展,其强大的推理能力为解决复杂任务提供了新的可能性。然而,将LLMs应用于统一...