利用深度学习量化与神经认知变化相关的大脑老化速度

随着全球老龄化问题的加剧,神经退行性疾病(如阿尔茨海默病,Alzheimer’s Disease, AD)的发病率逐年上升。大脑老化(Brain Aging, BA)是神经退行性疾病的重要风险因素之一,但其与生理年龄(Chronological Age, CA)并不完全一致。传统的大脑老化评估方法主要依赖于DNA甲基化时钟,然而,这种方法无法直接反映大脑组织的老化情况,因为血脑屏障(Blood-Brain Barrier)将血液中的细胞与脑细胞分隔开来。因此,如何通过非侵入性手段准确评估大脑老化速度(Pace of Brain Aging, P)成为了一个重要的研究课题。 本研究旨在通过深度学习技术,利用纵向磁共振成像(Longitudinal MRI)数据,开发一种能够量化大脑老化速度的模...

心脏介入手术中的路径规划模仿学习

模仿学习在心脏经皮介入手术路径规划中的应用 学术背景 心脏瓣膜疾病,尤其是二尖瓣反流(mitral regurgitation, MR),是全球范围内第三大常见的心脏瓣膜疾病,尤其在老年人群中发病率较高。二尖瓣反流的特征是二尖瓣在收缩期无法完全闭合,导致血液从左心室倒流回左心房,如果不及时治疗,可能导致心力衰竭等严重并发症。传统的开胸手术虽然有效,但对患者的创伤较大,恢复时间较长。近年来,微创经皮介入手术(如经导管二尖瓣修复术,TEER)因其创伤小、恢复快等优势,逐渐成为替代传统手术的选择。然而,这类手术对操作者的手眼协调能力要求极高,学习曲线陡峭,且手术通常只能在配备专业设备的中心进行,限制了其普及。 为了应对这些挑战,研究者们开始探索如何通过自动化技术来优化这些手术,特别是如何为机器人操...

基于互信息的虚拟现实存在感神经生理特征研究

虚拟现实中的存在感:神经生理学标记的探索与验证 背景介绍 近年来,虚拟现实(Virtual Reality, VR)技术在医学、训练和康复等领域得到了广泛应用。VR的核心在于用户的“存在感”(Sense of Presence),即用户在虚拟环境中感受到的“身临其境”的体验。然而,目前对于存在感的评估主要依赖于主观问卷,如ITC-SOPI(ITC-Sense of Presence Inventory)和SUS(Slater-Usoh-Steed)问卷。这些方法存在主观偏差,且难以捕捉用户的无意识反应。因此,开发一种基于神经生理信号的客观评估方法成为研究的迫切需求。 本研究的目的是通过多模态生理信号(如脑电图EEG、心电图ECG和皮肤电活动EDA)来识别与VR环境中存在感相关的神经生理标记,...

基于选择性听觉注意力解码的无监督脑机接口准确度估计

基于选择性听觉注意解码的脑机接口无监督准确性估计研究 学术背景 在复杂的听觉环境中,人类能够选择性地关注某一个声音源,而忽略其他干扰声音,这一现象被称为“鸡尾酒会效应”(cocktail party effect)。选择性听觉注意解码(Selective Auditory Attention Decoding, AAD)技术通过分析脑电图(Electroencephalography, EEG)等脑信号,解码出用户正在关注的声音源。这一技术在神经导向助听器(neuro-steered hearing aids)和脑机接口(Brain-Computer Interface, BCI)等领域具有重要应用。然而,当前的AAD算法通常依赖于监督学习,即需要用户明确告知其关注的声音源,以提供“地面真值...

基于短期运动任务的多尺度多层次特征评估框架用于帕金森病状态分类

学术背景 帕金森病(Parkinson’s Disease, PD)是第二常见的慢性神经退行性疾病,主要影响65岁及以上人群。随着全球人口老龄化的加剧,帕金森病的患病率预计将从2015年的700万增加到2040年的1300万。目前,帕金森病的诊断主要依赖于临床问卷和运动日记,这些方法耗时且存在较大的主观偏差。近年来,随着可穿戴技术和机器学习方法的结合,研究人员开始探索通过量化运动症状来辅助帕金森病的诊断。然而,这些技术的有效性受到环境设置的影响,难以在现实世界中广泛应用。因此,本研究旨在提出一种有效的特征评估框架,通过短期运动任务自动评估帕金森病运动症状的严重程度,并在现实世界中进行分类。 论文来源 该研究由来自University of Sheffield和Yunnan Universit...

DEISM:基于自校准机制的深度重建框架在加速化学交换饱和转移成像中的应用

基于自校准机制的深度重建框架(DEISM)在加速化学交换饱和转移成像中的应用 学术背景 化学交换饱和转移(Chemical Exchange Saturation Transfer, CEST)成像是一种高灵敏度的分子磁共振成像技术,能够检测与多种疾病(如癌症、癫痫和卒中)相关的生物分子。然而,CEST成像的一个主要缺点是扫描时间过长,这是由于需要在不同的饱和频率偏移下进行多次数据采集。长时间的扫描限制了CEST成像在临床中的广泛应用。为了解决这一问题,研究者们致力于开发加速CEST成像的技术,主要通过利用数据中的冗余信息,从欠采样的k空间数据中重建图像。 尽管现有的并行成像和压缩感知(Compressed Sensing, CS)技术在一定程度上加速了CEST成像,但这些方法仍存在局限性。...