DEISM:基于自校准机制的深度重建框架在加速化学交换饱和转移成像中的应用

基于自校准机制的深度重建框架(DEISM)在加速化学交换饱和转移成像中的应用 学术背景 化学交换饱和转移(Chemical Exchange Saturation Transfer, CEST)成像是一种高灵敏度的分子磁共振成像技术,能够检测与多种疾病(如癌症、癫痫和卒中)相关的生物分子。然而,CEST成像的一个主要缺点是扫描时间过长,这是由于需要在不同的饱和频率偏移下进行多次数据采集。长时间的扫描限制了CEST成像在临床中的广泛应用。为了解决这一问题,研究者们致力于开发加速CEST成像的技术,主要通过利用数据中的冗余信息,从欠采样的k空间数据中重建图像。 尽管现有的并行成像和压缩感知(Compressed Sensing, CS)技术在一定程度上加速了CEST成像,但这些方法仍存在局限性。...

PICU中儿童心率与体温关系的机器学习研究

儿童重症监护病房中心率与体温关系的机器学习研究 学术背景 在重症监护病房(PICU)中,心率(HR)和体温(BT)是关键的临床指标,能够反映患者的生理状态。尽管成年人中心率与体温的关系已被广泛研究,但在儿童群体中,特别是在PICU这一高风险环境中,相关研究仍然有限。儿童患者的生理特征与成年人存在显著差异,尤其是在0至18岁年龄段,心率随着年龄的增长而下降,而体温的变化则可能影响心率。然而,传统的线性模型在预测心率时往往存在局限性,尤其是在不同体温范围和年龄组中表现出低估或高估的现象。因此,探索心率、体温和年龄之间的复杂关系,对于改善PICU中的临床决策具有重要意义。 论文来源 本论文由Émilie Lu、Thanh-Dung Le、Philippe Jouvet和Rita Noumeir共同...

自监督特征检测与三维重建在神经内镜实时引导中的应用

自监督特征检测与三维重建在神经内镜实时引导中的应用

基于自监督学习的神经内窥镜实时3D重建与导航研究 学术背景 神经内窥镜手术(neuroendoscopy)作为一种微创手术技术,广泛应用于脑深部病变的治疗,如内镜下第三脑室造瘘术(endoscopic third ventriculostomy, ETV)、脉络丛烧灼术、囊肿开窗术等。然而,手术过程中由于脑组织移位(brain shift)和脑脊液(cerebrospinal fluid, CSF)流失,脑深部结构会发生几何形变,这给传统的基于术前影像的神经导航(neuronavigation)带来了挑战。传统导航系统通常依赖于术前磁共振(MRI)或计算机断层扫描(CT)影像的刚性配准(rigid registration),无法实时更新术中组织形变,导致导航精度下降。 为了解决这一问题,研...

基于多分辨率信号小波网络的语音情感识别研究

多分辨率信号小波网络在语音情感识别中的应用:SigWavNet 学术背景 语音情感识别(Speech Emotion Recognition, SER)在人机交互和心理学评估中扮演着重要角色。它通过分析语音信号来识别说话者的情感状态,广泛应用于紧急呼叫中心、健康护理和虚拟AI助手等领域。然而,尽管该领域取得了显著进展,系统复杂性、特征区分度不足以及噪声干扰等问题仍然存在。为了解决这些挑战,来自University of Québec、Concordia University和University of Québec at Montréal的研究团队提出了一种新的端到端深度学习框架——SigWavNet,直接从语音波形信号中提取有意义的特征,并通过多分辨率分析提升情感识别的准确性。 论文来源 ...

基于强化学习的共情反应生成框架

人工智能对话系统中的共情反应生成研究 学术背景 随着人工智能技术的快速发展,开放域对话系统(open-domain dialogue systems)逐渐成为研究热点。这类系统旨在与用户进行自然、流畅的对话,提供合理的回应。然而,尽管现有的对话系统在语言流畅性和连贯性方面取得了显著进展,但其在共情(empathy)能力上的不足仍然显著。共情是指理解他人经历和情感的能力,包括情感共情(affective empathy)和认知共情(cognitive empathy)。情感共情涉及对用户情感的反应,而认知共情则侧重于理解用户的情境。共情是人类交流的基本特征,对于构建拟人化的对话系统至关重要。 然而,现有的共情反应生成(empathetic response generation)方法主要依赖于...

基于文本引导的重建网络在不确定性缺失模态下的情感分析

基于文本引导的重构网络在多模态情感分析中的应用 学术背景 多模态情感分析(Multimodal Sentiment Analysis, MSA)是一项旨在整合文本、视觉和声学信号中的情感表达的研究领域。随着用户生成在线内容的丰富,MSA在提高情感理解和人机交互方面展现出巨大潜力。然而,现有的MSA方法面临两个主要问题:1)在未对齐的多模态数据中,文本的主导作用未被充分利用;2)在不确定缺失模态的情况下,模态的探索不足。这些问题导致情感判断的准确性受到限制,尤其是在实际应用中,背景噪音、传感器故障、面部缺失/遮挡、光线条件不佳、转录缺失等因素可能导致模态的随机缺失。 为了解决这些问题,研究者提出了一种基于文本引导的重构网络(Text-Guided Reconstruction Network,...