EISATC-Fusion 模型用于运动想象EEG解码

EISATC-Fusion 模型用于运动想象EEG解码

研究背景 脑机接口技术(brain-computer interface, BCI)可以实现大脑与外部设备的直接通信,广泛应用于人机交互、运动康复、医疗等领域。BCI的常见范式包括稳态视觉诱发电位(steady-state visual evoked potentials, SSVEP)、P300、运动想象(motor imagery, MI)等。其中,MI-BCI因其广泛应用前景而备受关注。 MI-BCI通常使用脑电图(electroencephalography, EEG)信号检测运动想象,使得用户能够通过想象运动来控制设备,如电动轮椅、光标和上肢机器人。然而,脑活动的不稳定性和低信噪比(signal-to-noise ratio, SNR),以及个体间信号的差异和EEG信道间的相关性,...

基于Transformer的深度学习网络与时空信息结合的原始EEG分类方法

研究背景及目的 近年来,脑机接口(Brain-Computer Interface,BCI)系统在神经工程和神经科学领域广泛应用,而脑电图(Electroencephalogram,EEG)作为反映中枢神经系统不同神经元群体活动的数据工具,已经成为这些领域中核心的研究内容。然而,EEG信号具有低空间分辨率、高时间分辨率、低信噪比以及个体差异大等特征,这些都为信号处理和准确分类带来了极大的挑战。尤其在运动想象(Motor Imagery,MI)这一EEG-BCI系统常用范式中,准确分类不同MI任务的EEG信号对于BCI系统的功能恢复和康复具有重要意义。 传统的MI-EEG分类方法通常基于手工特征提取和分类,但这些方法可能在特征提取阶段丢失EEG的有用信息。近年来,深度学习模型因其自动特征提取和...

基于小波的时间-频谱-注意力相关系数用于运动想象EEG分类

脑机接口(Brain-Computer Interface, BCI)技术近年来发展迅速,被认为是一种无需通过外周神经和肌肉,仅通过大脑直接控制外部设备的前沿技术。特别是在运动想象(Motor Imagery, MI)脑电图(Electroencephalography, EEG)应用中,BCI 技术展现了巨大的潜力。通过分析MI-EEG信号,可以帮助患有物理障碍或神经肌肉退化的病人提高生活质量。然而,由于个体之间的差异以及大脑活动的稳定性、低信噪比(Signal-to-Noise Ratio, SNR)等因素,如何从复杂的EEG信号中提取有效特征以提高MI-EEG分类系统的准确性,仍然是一个巨大的挑战。 在MI-EEG分类中,特征提取与表示是决定分类性能的关键。当前广泛使用的特征提取方法,...

基于注意力的双尺度融合卷积神经网络用于运动想象脑机接口

基于注意力的双尺度融合卷积神经网络用于运动想象脑机接口

脑机接口(Brain-Computer Interface, BCI)作为一种新增强通信与控制技术近年来逐渐崭露头角。基于电生理特征(如脑电图,EEG)的BCI中,运动想象(Motor Imagery, MI)是一个重要分支,通过解码用户的运动意图用于临床康复、智能轮椅控制、及光标控制等领域。然而,由于EEG信号的复杂性,如低信噪比(Signal-to-Noise Ratio, SNR)、非平稳性、低空间分辨率和高时间分辨率等特点,准确解码运动意图仍具有挑战性。现有的MI基BCI解码主要使用传统机器学习和深度学习方法。传统机器学习通常分为特征提取和特征分类两个独立步骤,方法包括快速傅里叶变换(Fast Fourier Transform, FFT)、通用空间模式(Common Spatial...

基于注意力机制深度学习的单通道脑电图睡眠分期分类方法

电子电气工程师学会 (IEEE)《神经系统与康复工程事务》2021年第29卷刊登了一篇题为《一种基于注意力深度学习的单通道EEG睡眠阶段分类方法》的文章。本文由Emadeldeen Edele、Zhenghua Chen、Chengyu Liu、Min Wu、Chee-Keong Kwoh、Xiaoli Li及Cuntai Guan等学者撰写。文章的主要目的是提出一种新型的基于注意力的深度学习模型,用于通过单通道的脑电图(EEG)信号进行自动睡眠阶段分类。 研究背景 睡眠是人类重要的生理过程,直接影响到每日生活的各个方面。有研究表明,高质量的睡眠能够促进身体健康和脑功能的提升,而睡眠中断则可能导致失眠或睡眠呼吸暂停等睡眠障碍。睡眠阶段(如浅睡和深睡)对免疫系统、记忆和代谢等起着关键作用,因此...

扩展 OPM-MEG 临床应用:一种高效的牙箍金属伪影自动抑制方法

拓展OPM-MEG在临床中的应用:一种有效自动抑制牙套金属伪影的方法 背景介绍 磁性脑电图(Magnetoencephalography, MEG)是一种通过多通道磁场测量传感器重建大脑神经电流分布和功能网络的技术。MEG相比于电生理学(Electroencephalography, EEG)在源空间分辨率上有显著优势,同时其磁场信号不受颅骨和头皮组织传导的干扰,在时间分辨率上也优于功能性磁共振成像(Functional Magnetic Resonance Imaging, fMRI)。因此,MEG在研究大脑功能与认知、癫痫的临床应用以及神经疾病研究中具有重要地位。 目前,MEG测量主要依赖两种设备:商用超导量子干涉装置(SQUID)和可穿戴光泵磁力计(Optically Pumped M...