Auditory Cues Modulate the Short Timescale Dynamics of STN Activity During Stepping in Parkinson’s Disease

Patients with Parkinson’s Disease (PD) often experience gait impairments, which severely affect their quality of life. Previous studies have suggested that β-frequency (15-30 Hz) oscillatory activity in the basal ganglia may be associated with gait impairments, but the exact dynamics of these oscillations during the gait process remain unclear. Add...

Exploration-based Model Learning with Self-Attention for Risk-Sensitive Robot Control

Discussion on Risk-Sensitive Robot Control Based on Self-Attention Mechanism Research Background The kinematics and dynamics in robot control are key factors to ensure the precise completion of tasks. Most robot control schemes rely on various models to achieve task optimization, scheduling, and priority control. However, the dynamic characteristic...

A Programmable Topological Photonic Chip

A Programmable Topological Photonic Chip

Research Progress on Programmable Topological Photonic Chips Research Background In recent years, topological insulators (TI) have garnered significant attention in the physics community due to their rich physical mechanisms and the potential applications of topological boundary modes, leading to rapid development in this field. Since the discovery...

m𝟐ixkg: Mixing for harder negative samples in knowledge graph

Academic Report Background A Knowledge Graph (KG) is structured data that records information about entities and relationships, widely used in question-answering systems, information retrieval, machine reading, and other fields. Knowledge Graph Embedding (KGE) technology maps entities and relationships in the graph into a low-dimensional dense vect...

Sequential Safe Static and Dynamic Screening Rule for Accelerating Support Tensor Machine

With the continuous advancement of data acquisition technology, obtaining large amounts of high-dimensional data containing multiple features has become very easy, such as images and vision data. However, traditional machine learning methods, especially those based on vectors and matrices, face challenges such as the curse of dimensionality, increa...

A Grid Fault Diagnosis Framework Based on Adaptive Integrated Decomposition and Cross-Modal Attention Fusion

A Grid Fault Diagnosis Framework Based on Adaptive Integrated Decomposition and Cross-Modal Attention Fusion Research Background With the continuous expansion and increasing complexity of modern power systems, the stable operation of the grid faces growing challenges. Grid faults can occur due to natural disasters, equipment failures, and local gri...