説明可能な人工知能を用いたWS2単層のナノスケール構造摂動の探査

背景紹介 二次元材料(2D materials)は、その独特な物理化学的特性により、ナノエレクトロニクスやオプトエレクトロニクスなどの分野で大きな応用可能性を示しています。しかし、これらの材料のナノスケールでの構造的擾乱(structural perturbations)は、その性能に重要な影響を及ぼします。従来のラマン分光法(Raman spectroscopy)などの手法は、材料の構造情報を提供できますが、その空間分解能は通常、回折限界に制限されており、ナノスケールでの構造変化を正確に検出するのは困難です。この問題を解決するため、研究者たちは、機械学習(machine learning, ML)と分光技術を組み合わせることで、空間分解能を向上させ、ナノスケールの構造的擾乱を明らかにするこ...

C-BN/ダイヤモンドヘテロ構造の構造的および化学的分析

学術的背景 立方晶窒化ホウ素(C-BN)は、超広帯域半導体材料であり、極めて高い熱伝導率、低い誘電率、および高い絶縁破壊電界を有しているため、高温・高電力電子デバイスにおいて広範な応用が期待されています。しかし、C-BNの合成は依然として多くの課題に直面しており、特に大面積基板上での高品質な単結晶C-BN薄膜の成長は困難です。ダイヤモンドは、C-BNとの格子不整合が小さい(1.36%)ことから、C-BNのエピタキシャル成長における理想的な基板とされています。それでも、C-BN/ダイヤモンドヘテロ構造の合成はまだ初期段階にあり、欠陥密度を低減し薄膜品質を向上させる方法については多くの未解決の問題が残されています。 本研究では、電子サイクロトロン共鳴プラズマ強化化学気相成長(ECR PECVD)...

音声-視覚ゼロショット学習のための意味的一貫性の学習

学術的背景 人工知能の分野において、ゼロショット学習(Zero-Shot Learning, ZSL)は非常に挑戦的なタスクであり、その目標は既に見たカテゴリの知識を用いて未見のカテゴリのサンプルを識別することです。音声-視覚ゼロショット学習(Audio-Visual Zero-Shot Learning, AVZSL)はゼロショット学習の一分野として、音声と視覚情報を組み合わせることで未見のカテゴリを分類することを目指しています。しかし、既存の多くの手法は強力な表現の学習に焦点を当てすぎており、音声と視覚の間の意味的な一貫性やデータ自体の階層構造を見落としています。この見落としは、モデルがテスト時に未見のカテゴリを効果的に分類できない原因となり、実際の応用におけるパフォーマンスを制限する可...

ビル管理システムのための高速機械学習

学術的背景 世界的エネルギー危機の深刻化と環境保護意識の高まりに伴い、建築管理システム(Building Management Systems, BMS)の知能化と効率化が学術界と産業界の注目の的となっています。従来のBMSはルールベースの制御方法に依存しており、エネルギー価格の変動や気象条件の変化などの環境変化に動的に対応することができませんでした。近年、機械学習(Machine Learning, ML)と人工知能(Artificial Intelligence, AI)技術の急速な発展により、BMSの知能化に新たな可能性がもたらされています。しかし、既存のBMSはリアルタイムデータ処理と意思決定の応答速度において依然として課題を抱えており、特にリソースが制限された環境での低遅延・高スル...

化学交換飽和転移磁気共鳴画像における人工知能

学術的背景 化学交換飽和転移(Chemical Exchange Saturation Transfer, CEST)磁気共鳴画像(MRI)は、生体組織の詳細な分子情報を提供する先進的な非侵襲的イメージング技術です。CEST MRIは、特定の代謝物の交換可能なプロトンを選択的に飽和させ、その飽和を水分子に転移させることで、低濃度のタンパク質や代謝物の検出と定量を可能にします。CEST MRIは、神経変性疾患やがんなどの診断において大きな可能性を示していますが、データ収集時間の長さ、画像処理の複雑さ、解釈の難しさなどの技術的課題により、研究環境から臨床応用への移行が制限されています。 近年、人工知能(Artificial Intelligence, AI)は、医療画像分野での応用が広がり、特に...

大規模言語モデルを活用した推薦システムの方法論とアプローチの比較分析

学術的背景 インターネット情報の爆発的な増加に伴い、推薦システム(Recommender Systems, RSs)は現代のデジタル生活において不可欠な役割を果たしています。Netflixの映画推薦やソーシャルメディアのパーソナライズされたニュース配信など、推薦システムはユーザーのオンライン体験を再構築しています。しかし、従来の推薦システムは、データの疎密性(data sparsity)、コールドスタート問題(cold-start)、スケーラビリティ(scalability)、説明可能性の欠如(lack of explainability)など、多くの課題に直面しています。近年、大規模言語モデル(Large Language Models, LLMs)が自然言語処理(Natural Lang...