MRIからの神経膠腫におけるIDH状態予測のための多階層特徴探索と融合ネットワーク

多層特徴探索と融合ネットワークを用いたMRIにおけるIDH状態予測研究 研究背景 膠芽腫は成人における最も一般的な悪性原発性脳腫瘍です。2021年の世界保健機関(WHO)の腫瘍分類によると、腫瘍のサブタイプの区分には遺伝子型が重要な意味を持ち、とりわけイソクエン酸脱水素酵素(IDH)遺伝子型は膠芽腫の診断に極めて重要です。臨床研究は、IDH変異を持つ膠芽腫が特定の表現型遺伝子変異特性を通じて酵素活性、細胞代謝および生物特性に影響を与えることを示しています。IDH変異を持つ膠芽腫は、IDH野生型のものよりもテモゾロミドに対して感受性が高く、予後が良好です。現在、IDH状態の認定は主に侵襲的手術後に組織標本を用いた遺伝子シーケンシングまたは免疫組織化学分析に依存しています。しかし、侵襲的な操作は...

ダイナミックコントラスト増強磁気共鳴画像における薬物動態パラメータの正規化フローに基づく分布推定

在現代医療診断および臨床研究において、動的コントラスト強調磁気共鳴画像(Dynamic Contrast-Enhanced Magnetic Resonance Imaging, DCE-MRI)技術は、組織病理学に関する重要な情報を提供します。トレーサーキネティック(Tracer-Kinetic, TK)モデルをフィットさせることにより、時間系列MRI信号から薬物動態学(Pharmacokinetic, PK)パラメーターを抽出できます。しかし、これらの推定されたPKパラメーターは、信号対雑音比(Signal-to-Noise Ratio, SNR)、バックグラウンドT1時間、開始時間、動脈入力機能(Arterial Input Function, AIF)、およびフィットアルゴリズムなど...

3D MRI の分類のためのシャム輸送ドメイン適応フレームワーク: グリオーマおよびアルツハイマー病

Siamese-Transport領域適応フレームワークに基づく3D MRIによる膠芽腫およびアルツハイマー病の分類 研究背景 コンピュータ支援診断において、3D磁気共鳴画像法(MRI)によるスクリーニングは早期診断に重要な役割を果たし、さまざまな脳疾患の悪化を防止するのに有効です。膠芽腫は一般的な悪性脳腫瘍で、その治療法は腫瘍のグレードによって異なります。そのため、正確で効率的な3D MRI分類は医用画像分析において極めて重要です。しかし、従来の深層学習モデルは臨床における未ラベルデータに適用された場合、異なる装置やデータ収集パラメータの違いによる領域間不一致性のため、性能が著しく低下します。既存の方法は主に領域間の差異を減少させることに焦点を当てていますが、セマンティック特徴と領域情報の...

解釈可能なAIを利用した脳腫瘍検出と分類のためのビジョントランスフォーマー、アンサンブルモデル、および転移学習

近年、脳腫瘍の高発生率と致命性のため、迅速かつ正確に脳腫瘍を検出し分類することが特に重要になってきています。脳腫瘍には悪性と非悪性の二種類があり、その異常な成長は脳に長期的な損傷を与えます。磁気共鳴画像(MRI)は一般的な脳腫瘍の検出方法です。しかし、専門家による手作業でのMRI画像分析に頼ると結果が一致しないリスクがあり、さらに単に腫瘍を識別するだけでは不十分で、迅速に腫瘍の種類を特定して早期に治療を開始することも重要です。 研究背景 腫瘍検出の速度、信頼性、公正性を向上させるために、本研究ではVGG16、InceptionV3、VGG19、ResNet50、InceptionResNetV2、Xceptionなど、さまざまな深層学習(Deep Learning, DL)アーキテクチャを探...

腫瘍切除後の低悪性度神経膠腫における神経膠腫成長モデルの予測価値の評価

低級グリオーマ手術後の成長モデル予測価値の評価研究レビュー はじめに グリオーマは、脳内で急速に拡散する侵襲性脳腫瘍である。この拡散のパターンと速度を理解し予測することで、治療計画の最適化が可能である。拡散-増殖モデルに基づくグリオーマ成長モデルは実現可能性を示しているが、実際の臨床データでの応用と評価には依然として課題がある。この問題の評価を改善するために、本研究では腫瘍成長問題をランキング問題と見なし、平均精度(Average Precision, AP)を指標として使用することを提案する。この方法は特定の体積閾値を必要とせず、空間パターンをより正確に評価できる。 研究の出典 この論文は、カリン・A・バン・ガルデレン(Karin A. van Garderen)、セバスチャン・R・バン・...