物理的知識を取り入れた深層学習による筋骨格モデル化:表面EMGから筋力と関節運動学の予測

肌骨モデルは、生体力学解析に広く利用されており、直接計測が困難な運動変数(例:筋力や関節モーメント)を推定することができます。従来の物理駆動の計算肌骨モデルは、神経駆動から筋肉、筋肉の動力学、および身体と関節の運動学と動力学の間の動的相互作用を説明することができます。しかし、これらのモデルはその複雑さのため、動作速度が遅く、リアルタイムアプリケーションの実現が難しいです。近年、データ駆動方式はその実現速度の速さと操作の簡単さから有望な代替手段となっていますが、基礎的な神経機械プロセスを反映することができません。 本研究では、物理学の知識を融合した深層学習フレームワークを提案し、筋骨モデリングを実現します。このフレームワークでは、物理分野の知識をデータ駆動モデルに導入し、ソフト制約として罰則/...

EMG駆動ロボットハンドトレーニングによる慢性脳卒中における半球間バランス回復の神経メカニズムの解明:動的因果モデルの洞察

EMG駆動ロボットハンドトレーニングによる慢性脳卒中における半球間バランス回復の神経メカニズムの解明:動的因果モデルの洞察

EMG駆動のロボットハンドトレーニングが慢性脳卒中患者の半球間バランスの回復に与える神経メカニズム:動的因果モデリングによる洞察 脳卒中は一般的な障害の原因であり、多くの脳卒中生存者は上肢麻痺を患います。上肢機能の障害は6ヶ月以上続くことが多く、完全回復する生存者は少数(12%未満)です。これらの患者の日常生活能力を回復させ、生活の質を向上させるために、研究者たちは脳卒中後のリハビリプランの開発に取り組んでいます。 近年、ロボット補助装置を使用した上肢のリハビリに関する研究が広く注目を集めています。ロボットリハビリは一貫性のある、集中的かつインタラクティブなトレーニング体験を提供し、患者の積極的な参加を促します。総合的な分析では、ロボット補助トレーニングを受けた個体は上肢のFugl-Meye...

ウェーブレットベースの時間-スペクトル-注意相関係数による運動想像EEG分類

脑機インターフェース(Brain-Computer Interface, BCI)技術は近年急速に発展しており、末梢神経や筋肉を介さず、大脳を直接制御する先端技術として注目されています。特に運動イメージ(Motor Imagery, MI)脳波(Electroencephalography, EEG)の応用において、BCI技術は大きな可能性を示しています。MI-EEG信号を分析することで、身体障害や神経筋退化の患者の生活の質を向上させる手助けが可能です。しかし、個人間の差異や大脳活動の安定性、低信号雑音比(Signal-to-Noise Ratio, SNR)などの要因により、複雑なEEG信号から有効な特徴を抽出し、MI-EEG分類システムの精度を向上させることは依然として大きな課題となって...

寿命中の磁気脳波記録派生振動マイクロステートパターン:ケンブリッジ老化と神経科学センターコホート

全脳振動ミクロ状態パターンのライフスパンにわたる変化の分析における磁気脳波計(MEG)の応用:ケンブリッジ老化・神経科学センターのコホート研究 研究背景 人口の高齢化問題が日増しに深刻化する中、高齢化過程の神経生理学的変化を理解することがますます重要になっています。老化した脳は多くの神経変性疾患の主要なリスク要因であるが、全脳の振動活動が健康な老化にどのように影響を及ぼすかは完全には解明されていません。細胞レベルでは、神経細胞の生体電気化学特性により、これらは電磁場を生成することができ、その変化を検出することは潜在的な組織病理学的生物標識として役立つ可能性があります。5種類の典型的な振動脳信号(デルタ波、シータ波、アルファ波、ベータ波、ガンマ波)は広く研究されていますが、それらが老化において...

筋萎縮性側索硬化症の皮質神経生理学的特徴

ALSの皮質神経生理特性解析およびバイオマーカーとしての可能性研究 背景 Amyotrophic Lateral Sclerosis (ALS) 亦称筋萎縮性側索硬化症は、成人発症の神経変性疾患であり、大脳、脊髄および周辺運動システムの完全性が徐々に失われることが特徴です。臨床および遺伝学的研究により前頭側頭葉認知症との重複が明らかにされ、複数の上位経路が特定されましたが、現在のところ疾患進行を遅らせる効果的な薬物療法は存在せず、現行の試験は生存期間の延長などの結果に依存しており、感度が低いです。より個々の疾患活動に密接に関連するバイオマーカーが急務であり、新薬効果を迅速に検証するために不可欠です。 出典 この研究は、Michael Trubshaw、Chetan Gohil、Katie Y...