将大型语言模型和知识图谱统一起来

统一大语言模型与知识图谱 背景 近年来,自然语言处理和人工智能领域涌现了大量研究成果,其中,大语言模型(Large Language Models, LLMS)如 ChatGPT 和 GPT-4 表现出色。然而,尽管这些模型具有出色的泛化能力,常常因其黑箱性质无法有效捕捉和访问事实知识而受到批评。另一方面,知识图谱(Knowledge Graphs, KGs)如 Wikipedia 和 Huapu 通过结构化形式存储了大量事实知识,但构建和演化知识图谱的过程却非常复杂。因此,研究人员提出将大语言模型与知识图谱相结合,利用两者的优势以实现互补。 来源 本文发表在《IEEE Transactions on Knowledge and Data Engineering》2024年7月第36卷第7期...

DRGI: 深度关系图信息增益用于知识图谱构建完成

知识图谱(Knowledge Graph,KG)嵌入技术是人工智能领域中的一个重要研究课题,主要用于知识获取和知识图谱的扩展。近年来,尽管有许多基于图嵌入的方法被提出,但这些方法通常只能关注知识图谱的语义信息,忽略了图的自然结构信息。因此,尽管图卷积网络(Graph Convolutional Networks,GCN)方法能够捕捉部分结构信息,但由于知识图谱的不完全性,它们仍然面临信息不足的问题。为了克服这一问题,本研究提出了一种新的模型,即深度关系图信息增益(Deep Relational Graph Infomax,DRGI),通过互信息(Mutual Information,MI)最大化充分利用了结构信息和语义信息。 本文由来自中国电子科技大学未来媒体中心的Shuang Liang,...

基于人工智能的乳腺病变分类

基于人工智能的乳腺病变分类多中心研究 在乳腺癌领域,早期诊断对于提高治疗效果和生存率至关重要。乳腺癌主要分为原位癌和浸润性癌两类,这两类癌症在治疗策略和预后上存在显著差异。原位癌的腋窝受累发生率较低(1-2%),不推荐进行前哨淋巴结活检(SLNB);而对于浸润性癌症,SLNB或腋窝淋巴结清扫(ALND)是必要的。因此,能够在术前准确区分良性、恶性以及原位和浸润癌症显得格外重要。 对比增强乳腺摄影(CEM)是一种新兴的技术,因其能够体现病变的血管特性而在临床应用中日益广泛。然而,CEM在诊断乳腺癌方面尽管对恶性病变具有高敏感性,但其特异性却不尽如人意(66-84%)。此外,传统影像学检查的解释还会受到放射科医生经验的影响,不同的放射科医生之间存在较大的差异。因此,开发一种自动、可靠,并且能够在...

基于放射组学的术后立体定向放疗后脑转移瘤患者局部控制预测

放射组学在脑转移患者术后立体定向放疗局部控制预测中的应用 学术背景 脑转移(Brain Metastases, BMs)是最常见的恶性脑肿瘤,其发病率远远超过了原发性脑瘤如胶质瘤。最近的医疗指南建议对症状明显或较大的脑转移患者进行手术治疗。为了提高局部控制率,建议对一到两个切除的BMs患者进行切除腔的立体定向放疗(Stereotactic Radiotherapy, SRT),方法可以在术后12个月内实现70%到90%的局部控制率。然而,即使在辅助SRT后,局部失败(Local Failure, LF)的风险仍然存在,这引发了对预治疗放射组学(radiomics)预测工具的需求,以识别高LF风险的患者。 研究主要信息 该研究由Josef A. Buchner等发表在《Neuro-Oncolo...

基于CNN的新型图像分割流水线用于个体化猫脊髓刺激建模

基于卷积神经网络(CNN)的图像分割流程用于个体化猫脊髓刺激建模 背景与研究动机 脊髓刺激(Spinal Cord Stimulation, SCS)是一种被广泛应用于慢性疼痛管理的治疗方法。近年来,它也被用于调节神经活动,旨在恢复失去的自主或感知运动功能。个性化的建模和治疗计划是确保SCS安全有效的重要方面。然而,生成所需细节和准确性水平的脊柱模型需要耗时且劳动密集的手工图像分割,由人类专家进行。因此,迫切需要自动化分割算法,以便在数据有限的情况下也能生成高质量的解剖模型。 论文来源 本文由Alessandro Fasse、Taylor Newton、Lucy Liang、Uzoma Agbor、Cecelia Rowland、Niels Kuster、Robert Gaunt、Elvir...