Améliorer la segmentation des gliomes de bas grade pédiatriques grâce à l'apprentissage multitâche

Amélioration de la segmentation du gliome pédiatrique de bas grade par l’apprentissage multitâche Introduction La segmentation des tumeurs cérébrales chez les enfants est une tâche clé pour l’analyse du volume tumoral et les algorithmes d’intelligence artificielle. Cependant, ce processus est chronophage et nécessite l’expertise des neuroradiologue...

Classification EEG Motor Imagery Basé sur l'Apprentissage Profond en Exploitant la Connectivité Fonctionnelle de l'Imagerie de Source Corticale

Basé sur l’apprentissage profond pour la classification des EEG d’imagerie motrice en utilisant la connectivité fonctionnelle de l’imagerie des sources corticales Contexte et motivations de la recherche Les interfaces cerveau-ordinateur (ICO) sont des systèmes qui permettent de décoder directement et de transmettre des informations sur l’activité c...

AutoAlign: Alignement automatique et efficace des graphes de connaissances par des modèles de langage de grande taille

AutoAlign:Une méthode d’alignement de graphes de connaissances entièrement automatique et efficace, conduite par des modèles linguistiques à grande échelle Le graphe de connaissances (Knowledge Graph, KG) a été largement utilisé dans divers domaines tels que les systèmes de questions-réponses, les systèmes de conversation et les systèmes de recomma...

Réseaux de mémoire graphique profonde pour le traçage de connaissances robustes à l'oubli

Réseaux de mémoire graphique profonde pour le traçage de connaissances robustes à l'oubli

Réseau de Mémoire Graphique Profonde pour le Suivi de Connaissances Robustes À l’Oubli Ces dernières années, le suivi des connaissances (Knowledge Tracing, KT) en tant que méthode importante d’apprentissage personnalisé a attiré une attention considérable. Le suivi des connaissances vise à prédire la précision des réponses des étudiants à de nouvel...

DeepSleepNet : Un modèle de classification automatique des stades du sommeil basé sur l'EEG monocanal brut

Réseau de Sommeil Profond : Modèle de Scoring Automatique des Stades de Sommeil Basé sur l’EEG à Canal Unique Introduction Le sommeil a un impact significatif sur la santé humaine, et surveiller la qualité du sommeil est crucial dans la recherche et la pratique médicale. Traditionnellement, les experts en sommeil évaluent les stades du sommeil en a...