利用可解释人工智能探测WS2单层纳米尺度结构扰动

背景介绍 二维材料(2D materials)因其独特的物理化学性质,在纳米电子学、光电子学等领域展现出巨大的应用潜力。然而,这些材料在纳米尺度上的结构扰动(structural perturbations)对其性能有着重要影响。传统的表征方法如拉曼光谱(Raman spectroscopy)虽然能够提供材料的结构信息,但其空间分辨率通常受到衍射极限的限制,难以在纳米尺度上精确探测结构变化。为了解决这一问题,研究者们开始探索将机器学习(machine learning, ML)与光谱技术结合,以提高空间分辨率并揭示纳米尺度的结构扰动。 本研究由来自Hanyang University、Sungkyunkwan University、Korea Advanced Institute of Sc...

C-BN/金刚石异质结构的结构和化学分析

学术背景 立方氮化硼(C-BN)是一种超宽带隙半导体材料,具有极高的热导率、低介电常数和高击穿电场,因此在高温、高功率电子器件中具有广泛的应用前景。然而,C-BN的合成仍然面临诸多挑战,尤其是如何在大尺寸基底上实现高质量的单晶C-BN薄膜的生长。金刚石由于其与C-BN的晶格失配较小(1.36%),被认为是C-BN外延生长的理想基底。尽管如此,C-BN/金刚石异质结构的合成仍然处于早期发展阶段,尤其是在如何减少缺陷密度和提高薄膜质量方面,仍然存在许多未解之谜。 本研究旨在通过电子回旋共振等离子体增强化学气相沉积(ECR PECVD)技术,在硼掺杂的金刚石基底上生长C-BN薄膜,并通过透射电子显微镜(TEM)和电子能量损失谱(EELS)等手段,详细分析薄膜的形貌特征、缺陷类型以及化学键合状态。研...

学习语义一致性用于音频-视觉零样本学习

学术背景 在人工智能领域,零样本学习(Zero-Shot Learning, ZSL)是一项极具挑战性的任务,其目标是通过已见类别的知识来识别未见类别的样本。音频-视觉零样本学习(Audio-Visual Zero-Shot Learning, AVZSL)作为零样本学习的一个分支,旨在通过结合音频和视觉信息来实现对未见类别的分类。然而,现有的许多方法往往过于关注学习强表征,而忽略了音频和视觉之间的语义一致性以及数据本身的层次结构。这种忽略可能导致模型在测试时无法有效分类未见类别,从而限制了其在实际应用中的表现。 为了解决这一问题,来自Guizhou University、Shanghai Jiao Tong University和Oklahoma State University的研究团队...

快速机器学习在建筑管理系统中的应用

学术背景 随着全球能源危机的加剧和环境保护意识的提升,建筑管理系统(Building Management Systems, BMS)的智能化与高效化成为了学术界和工业界关注的焦点。传统的BMS依赖于基于规则的控制方法,无法动态适应环境变化,如能源价格波动和气象条件的变化。近年来,机器学习(Machine Learning, ML)和人工智能(Artificial Intelligence, AI)技术的快速发展为BMS的智能化提供了新的可能性。然而,现有的BMS在实时数据处理和决策响应方面仍存在不足,尤其是在资源受限的环境中,如何实现低延迟、高吞吐量的ML模型部署成为了一个亟待解决的问题。 为此,Mohammed Mshragi和Ioan Petri等学者在2025年发表了一篇题为《快速机...

人工智能在化学交换饱和转移磁共振成像中的应用

学术背景 化学交换饱和转移(Chemical Exchange Saturation Transfer, CEST)磁共振成像(MRI)是一种先进的非侵入性成像技术,能够提供活体组织的详细分子信息。CEST MRI通过选择性饱和特定代谢物的可交换质子,并将这种饱和转移到水分子中,从而实现对低浓度蛋白质和代谢物的检测和定量。尽管CEST MRI在神经退行性疾病和癌症等疾病的诊断中显示出巨大潜力,但其在临床中的应用仍面临诸多技术挑战,例如数据采集时间长、图像处理复杂以及解释难度大。这些问题限制了CEST MRI从研究环境向临床实践的过渡。 近年来,人工智能(Artificial Intelligence, AI)在医学影像领域的应用日益广泛,尤其是在处理大规模数据和提供精确诊断方面表现出色。AI...

利用大语言模型的推荐系统方法论与方法的比较分析

学术背景 随着互联网信息的爆炸式增长,推荐系统(Recommender Systems, RSs)在现代数字生活中扮演着不可或缺的角色。无论是Netflix的电影推荐,还是社交媒体的个性化新闻推送,推荐系统都在重塑用户的在线体验。然而,传统的推荐系统面临诸多挑战,如数据稀疏性(data sparsity)、冷启动问题(cold-start)、可扩展性(scalability)和缺乏可解释性(lack of explainability)等。近年来,大语言模型(Large Language Models, LLMs)在自然语言处理(Natural Language Processing, NLP)领域取得了巨大进展,这促使研究者探索如何将这些模型应用于推荐系统,以利用其强大的文本表示能力和丰富...