心脏介入手术中的路径规划模仿学习

模仿学习在心脏经皮介入手术路径规划中的应用 学术背景 心脏瓣膜疾病,尤其是二尖瓣反流(mitral regurgitation, MR),是全球范围内第三大常见的心脏瓣膜疾病,尤其在老年人群中发病率较高。二尖瓣反流的特征是二尖瓣在收缩期无法完全闭合,导致血液从左心室倒流回左心房,如果不及时治疗,可能导致心力衰竭等严重并发症。传统的开胸手术虽然有效,但对患者的创伤较大,恢复时间较长。近年来,微创经皮介入手术(如经导管二尖瓣修复术,TEER)因其创伤小、恢复快等优势,逐渐成为替代传统手术的选择。然而,这类手术对操作者的手眼协调能力要求极高,学习曲线陡峭,且手术通常只能在配备专业设备的中心进行,限制了其普及。 为了应对这些挑战,研究者们开始探索如何通过自动化技术来优化这些手术,特别是如何为机器人操...

基于互信息的虚拟现实存在感神经生理特征研究

虚拟现实中的存在感:神经生理学标记的探索与验证 背景介绍 近年来,虚拟现实(Virtual Reality, VR)技术在医学、训练和康复等领域得到了广泛应用。VR的核心在于用户的“存在感”(Sense of Presence),即用户在虚拟环境中感受到的“身临其境”的体验。然而,目前对于存在感的评估主要依赖于主观问卷,如ITC-SOPI(ITC-Sense of Presence Inventory)和SUS(Slater-Usoh-Steed)问卷。这些方法存在主观偏差,且难以捕捉用户的无意识反应。因此,开发一种基于神经生理信号的客观评估方法成为研究的迫切需求。 本研究的目的是通过多模态生理信号(如脑电图EEG、心电图ECG和皮肤电活动EDA)来识别与VR环境中存在感相关的神经生理标记,...

新型传感器集成离合器的设计及其在准被动背部外骨骼中的应用

学术背景 在现代工作环境中,尤其是涉及重复性搬运和弯腰的行业,腰部损伤是一种常见且代价高昂的职业健康问题。根据统计,腰部损伤占美国所有职业性肌肉骨骼损伤的35%。尽管通过人体工程学控制(如减少某些物料搬运任务)可以降低风险,但在许多情况下,完全消除风险暴露并不可行。因此,开发能够辅助工人减轻腰部负担的技术显得尤为重要。 外骨骼(Exoskeletons)和外骨骼服(Exosuits)是近年来兴起的一种可穿戴技术,能够通过提供辅助力来减少腰部损伤的风险。准被动外骨骼(Quasi-passive exos)结合了被动外骨骼的轻便性与主动外骨骼的灵活性,能够在需要时提供辅助力,而在不需要时保持不干扰用户的状态。然而,现有的准被动外骨骼离合器在设计上存在一些局限性,特别是传感和控制能力不足,限制了其...

囊胚期胚胎滋养层细胞活检的自动化与控制

自动化技术在胚胎滋养层细胞活检中的应用研究 学术背景 胚胎活检(Embryo Biopsy)是辅助生殖技术(In Vitro Fertilization, IVF)中的重要环节,尤其是在植入前遗传学检测(Preimplantation Genetic Testing, PGT)中。通过胚胎活检,医生可以从胚胎中提取少量细胞进行遗传分析,以避免遗传疾病的传递并提高胚胎植入的成功率。然而,传统的胚胎活检依赖于人工操作,存在操作时间长、成功率不稳定以及胚胎损伤风险高等问题。随着单细胞生物学研究的深入,自动化技术的引入成为解决这些问题的关键。本文旨在开发一种基于计算机视觉和图像反馈控制算法的自动化系统,用于在小鼠囊胚阶段进行滋养层细胞(Trophectoderm, TE)活检,以提高活检的精确性和可...

基于选择性听觉注意力解码的无监督脑机接口准确度估计

基于选择性听觉注意解码的脑机接口无监督准确性估计研究 学术背景 在复杂的听觉环境中,人类能够选择性地关注某一个声音源,而忽略其他干扰声音,这一现象被称为“鸡尾酒会效应”(cocktail party effect)。选择性听觉注意解码(Selective Auditory Attention Decoding, AAD)技术通过分析脑电图(Electroencephalography, EEG)等脑信号,解码出用户正在关注的声音源。这一技术在神经导向助听器(neuro-steered hearing aids)和脑机接口(Brain-Computer Interface, BCI)等领域具有重要应用。然而,当前的AAD算法通常依赖于监督学习,即需要用户明确告知其关注的声音源,以提供“地面真值...

基于短期运动任务的多尺度多层次特征评估框架用于帕金森病状态分类

学术背景 帕金森病(Parkinson’s Disease, PD)是第二常见的慢性神经退行性疾病,主要影响65岁及以上人群。随着全球人口老龄化的加剧,帕金森病的患病率预计将从2015年的700万增加到2040年的1300万。目前,帕金森病的诊断主要依赖于临床问卷和运动日记,这些方法耗时且存在较大的主观偏差。近年来,随着可穿戴技术和机器学习方法的结合,研究人员开始探索通过量化运动症状来辅助帕金森病的诊断。然而,这些技术的有效性受到环境设置的影响,难以在现实世界中广泛应用。因此,本研究旨在提出一种有效的特征评估框架,通过短期运动任务自动评估帕金森病运动症状的严重程度,并在现实世界中进行分类。 论文来源 该研究由来自University of Sheffield和Yunnan Universit...

基于光谱扩散后验采样的多材料分解

基于光谱扩散后验采样的多材料分解研究 背景介绍 在医学成像领域,CT(计算机断层扫描)技术被广泛应用于疾病诊断和治疗规划。近年来,谱CT(spectral CT)因其能够提供能量依赖的衰减信息,成为研究热点。谱CT通过多能量通道的投影数据,可以重建出不同材料的密度分布,这一过程称为材料分解(material decomposition)。然而,材料分解是一个高度非线性的逆问题,传统的分解方法如解析分解(analytical decomposition)和迭代模型分解(iterative/model-based decomposition)存在诸多局限性,如计算效率低、噪声大、模型依赖性强等。此外,尽管基于深度学习的分解方法在精度和速度上有显著提升,但它们往往缺乏对物理模型的显式利用,导致鲁棒...

DEISM:基于自校准机制的深度重建框架在加速化学交换饱和转移成像中的应用

基于自校准机制的深度重建框架(DEISM)在加速化学交换饱和转移成像中的应用 学术背景 化学交换饱和转移(Chemical Exchange Saturation Transfer, CEST)成像是一种高灵敏度的分子磁共振成像技术,能够检测与多种疾病(如癌症、癫痫和卒中)相关的生物分子。然而,CEST成像的一个主要缺点是扫描时间过长,这是由于需要在不同的饱和频率偏移下进行多次数据采集。长时间的扫描限制了CEST成像在临床中的广泛应用。为了解决这一问题,研究者们致力于开发加速CEST成像的技术,主要通过利用数据中的冗余信息,从欠采样的k空间数据中重建图像。 尽管现有的并行成像和压缩感知(Compressed Sensing, CS)技术在一定程度上加速了CEST成像,但这些方法仍存在局限性。...

PICU中儿童心率与体温关系的机器学习研究

儿童重症监护病房中心率与体温关系的机器学习研究 学术背景 在重症监护病房(PICU)中,心率(HR)和体温(BT)是关键的临床指标,能够反映患者的生理状态。尽管成年人中心率与体温的关系已被广泛研究,但在儿童群体中,特别是在PICU这一高风险环境中,相关研究仍然有限。儿童患者的生理特征与成年人存在显著差异,尤其是在0至18岁年龄段,心率随着年龄的增长而下降,而体温的变化则可能影响心率。然而,传统的线性模型在预测心率时往往存在局限性,尤其是在不同体温范围和年龄组中表现出低估或高估的现象。因此,探索心率、体温和年龄之间的复杂关系,对于改善PICU中的临床决策具有重要意义。 论文来源 本论文由Émilie Lu、Thanh-Dung Le、Philippe Jouvet和Rita Noumeir共同...

自监督特征检测与三维重建在神经内镜实时引导中的应用

自监督特征检测与三维重建在神经内镜实时引导中的应用

基于自监督学习的神经内窥镜实时3D重建与导航研究 学术背景 神经内窥镜手术(neuroendoscopy)作为一种微创手术技术,广泛应用于脑深部病变的治疗,如内镜下第三脑室造瘘术(endoscopic third ventriculostomy, ETV)、脉络丛烧灼术、囊肿开窗术等。然而,手术过程中由于脑组织移位(brain shift)和脑脊液(cerebrospinal fluid, CSF)流失,脑深部结构会发生几何形变,这给传统的基于术前影像的神经导航(neuronavigation)带来了挑战。传统导航系统通常依赖于术前磁共振(MRI)或计算机断层扫描(CT)影像的刚性配准(rigid registration),无法实时更新术中组织形变,导致导航精度下降。 为了解决这一问题,研...