多尺度视觉中枢引导的多模态神经机器翻译:文本感知的跨模态对比解耦

多尺度视觉中枢引导的多模态神经机器翻译:文本感知的跨模态对比解耦

多尺度视觉中枢引导的多模态神经机器翻译:文本感知的跨模态对比解耦 学术背景 多模态神经机器翻译(Multi-Modal Neural Machine Translation, MNMT)旨在将语言无关的视觉信息引入文本以提升机器翻译的性能。然而,由于图像和文本在模态上的显著差异,这两者之间不可避免会出现语义不匹配的问题。解决这些问题的目标在于通过使用分解的多尺度视觉信息作为跨语言中枢,提高不同语言之间的对齐,从而改进MNMT的表现。 论文来源 这篇论文由朱俊俊、苏瑞和叶俊杰等研究人员撰写,作者分别来自昆明理工大学信息工程与自动化学院、云南大学信息科学与工程学院以及云南省人工智能重点实验室。论文将在2024年发表于著名期刊”Neural Networks”。 研究流程 研究工作主要分为以下几个...

一种可视化脑表面神经元活动的脑电图微显示器

一种可视化脑表面神经元活动的脑电图微显示器

一种可视化脑表面神经元活动的脑电图微显示器 背景介绍 当前脑外科手术的功能性映射主要依赖于神经外科医生与电生理学家之间的语言交流。这些过程耗时且存在有限的分辨率。此外,用于测量脑活动的电极网格分辨率较低,且难以与脑表面充分贴合。为了更有效地在手术过程中实时监测和显示脑表面神经元活动,本研究提出并开发了一种具有2048个氮化镓(GaN)发光二极管(LED)的脑内电生理学微型显示屏(iEEG microdisplay)。 研究概览 本文由Youngbin Tchoe等人所写,分别隶属于加利福尼亚大学圣地亚哥分校的电子与计算机工程系、生物医学工程系、麻醉学系、神经外科系以及其他科室。该论文发表于2024年4月24日的《Science Translational Medicine》。 研究工作流程 ...

具备完全神经形态视觉与控制的自动驾驶飞行器

具备完全神经形态视觉与控制的自动驾驶飞行器

具备完全神经形态视觉与控制的自动驾驶飞行器 背景与研究动机 过去十年间,深度人工神经网络(ANNs)在人工智能领域取得了巨大进步,特别是在视觉处理方面。然而,这些先进的视觉处理技术在实现高精确度的同时,往往需要大量且耗能的计算资源,这使得其在小型飞行机器人等资源受限的情况下难以应用。 针对这一问题,神经形态硬件通过模仿生物大脑的稀疏、异步特性,实现了更高效的感知与处理能力。在机器人领域,神经形态硬件中的事件驱动相机和脉冲神经网络(SNNs)具有低延迟、低能耗的潜力。然而,当前嵌入式神经形态处理器的限制和脉冲神经网络训练的挑战使得这些技术主要应用于低维度的感知和动作任务。 为解决这些问题,本文展示了一个全神经形态的视觉到控制的流水线,用于控制飞行中的无人机。具体而言,我们训练了一个脉冲神经网络...

深度强化学习为双足机器人赋能敏捷的足球技能

深度强化学习为双足机器人赋能敏捷的足球技能

深度强化学习为双足机器人赋能敏捷的足球技能 背景介绍 智能体在物理世界中展现出敏捷、灵活和理解能力,是人工智能(Artificial Intelligence,AI)研究长期以来的目标之一。然而,动物和人类不仅能流畅地完成复杂的身体动作,还能感知和理解环境,并通过身体在世界中实现复杂的目标。从历史上看,创造具有复杂运动能力的智能化身体代理的尝试由来已久,无论是在仿真环境中还是在现实中。伴随近几年技术的加速进步,尤其是基于学习的方法对这一领域的推进,深度强化学习(Deep Reinforcement Learning,Deep RL)已经证明其能够高效解决复杂的运动控制问题,无论是对于仿真角色还是物理机器人。 然而,对于人形和双足机器人,由于其在稳定性、机器人安全性、自由度数量和硬件可用性方面...

能够自主导航行走的轮腿机器人

能够自主导航行走的轮腿机器人

能够自主导航行走的轮腿机器人 背景介绍 城市化进程的加速让供应链物流尤其是最后一公里配送面临巨大挑战。随着交通压力增加和对更快配送服务需求的上升,尤其是室内和街道上的复杂路线给配送带来了难以解决的问题。传统的轮式机器人难以跨越复杂的障碍物,而仅靠腿式系统又无法达到所需的速度和效率。例如,ANYmal机器人虽具备一定的移动能力,但其最大行驶速度仅为平均人行速度的一半,且续航时间也有限。因此,需开发一种即能在平坦地面上高效运动又能跨越障碍物的机器人系统成为了研究的主要方向。 本文主要研究的是轮腿机器人,结合轮子和腿部的优势,使其在长距离运输中既能在中等地面上高速行驶,又能在复杂地形上保持灵活性。 论文来源 本文由Joonho Lee、Marko Bjelonic、Alexander Reske、...

立体人工复眼用于三维空间中的时空感知

立体人工复眼用于三维空间中的时空感知

立体人工复眼用于三维空间的时空感知 本研究文章发表在2024年5月15日的《Science Robotics》期刊上,题为“立体人工复眼用于三维空间的时空感知(Stereoscopic Artificial Compound Eyes for Spatiotemporal Perception in Three-Dimensional Space)”,第一作者为Byungjoon Bae,指导作者为Kyusang Lee。研究团队主要来自University of Virginia的电气与计算机工程系和材料科学与工程系。 研究背景 在自然界中,节肢动物(arthropods)的复眼是非常有效的生物视觉系统,具备广阔的视野(Field of View, FOV)和高运动敏感度,而祷蛾(mant...