微铸3D打印多超材料用于可编程多模态仿生电子学

基于铸型微铸造3D打印的多材料仿生电子器件研究 学术背景 随着仿生电子技术的快速发展,模拟人类感知功能的电子皮肤(Electronic Skin, E-skin)和柔性传感器在机器人、医疗设备和人机交互等领域展现出广阔的应用前景。然而,现有的仿生电子器件在材料选择、结构复杂性和功能集成方面面临诸多挑战。特别是,如何在不破坏材料性能的前提下,实现多种高难度材料的自由组装和多功能集成,成为当前研究的瓶颈。 传统的制造方法,如电纺、光刻和转移印刷,往往难以同时满足材料多样性和复杂结构的需求。3D打印技术虽然为复杂结构的制造提供了可能,但在处理多种高难度材料时,仍然面临材料兼容性、结构分辨率不足等问题。为了解决这些问题,研究人员借鉴了古代失蜡铸造(Lost-wax Casting)的技术思路,提出了...

一种基于离子动力学的喷墨打印有机电化学晶体管阵列用于汗液指纹识别

一种基于离子动力学的喷墨打印有机电化学晶体管阵列用于汗液指纹识别

基于离子动力学的汗液指纹识别技术:喷墨打印有机电化学晶体管阵列的研究 学术背景 汗液作为一种非侵入性的生物标志物,蕴含着丰富的生理信息,能够反映人体的健康状况,如水分平衡、疾病标志物等。然而,汗液成分复杂,包含多种离子和分子,传统的汗液监测设备通常依赖于具有特定生物识别元件(如离子选择性膜和酶)的传感器,这些传感器需要通过复杂的化学修饰来选择性结合特定的离子或分子。然而,这种复杂的化学修饰过程可能导致信号漂移和干扰,限制了其广泛应用。为了解决这一问题,研究者提出了一种基于离子动力学的汗液指纹识别策略,结合喷墨打印的有机电化学晶体管(Organic Electrochemical Transistor, OECT)阵列和人工智能算法,实现了对汗液成分的高效检测和分析。 论文来源 该研究由来自P...

基于电阻式存储器的零样本液态状态机实现多模态事件数据学习

新型阻变存储器驱动的零样本多模态事件学习系统:硬件-软件协同设计的研究报告 学术背景 人类大脑是一种复杂的脉冲神经网络(Spiking Neural Network, SNN),能够以极低的功耗在多模态信号中进行零样本学习(Zero-shot Learning),即通过泛化已有知识来处理新任务。然而,将这种能力复制到神经形态硬件中面临着硬件和软件的双重挑战。硬件方面,摩尔定律的放缓以及冯·诺依曼瓶颈(von Neumann bottleneck)限制了传统数字计算机的效率;软件方面,脉冲神经网络的训练复杂度极高。为了解决这些问题,研究人员提出了一种硬件-软件协同设计的方法,结合了阻变存储器(Resistive Memory)和人工神经网络(Artificial Neural Network,...

基于混合专家和3D模拟内存计算的大语言模型高效扩展

基于混合专家与三维模拟内存计算的大语言模型高效扩展 学术背景 近年来,大规模语言模型(Large Language Models, LLMs)在自然语言处理、文本生成等领域展现出了强大的能力。然而,随着模型规模的不断增加,训练和推理的成本也急剧上升,尤其是在内存占用、计算延迟和能耗方面。这成为阻碍LLMs广泛应用的主要瓶颈之一。传统的冯·诺依曼架构在处理大规模参数时,数据频繁在内存和计算单元之间移动,导致所谓的“冯·诺依曼瓶颈”,加剧了这些挑战。 为了解决这一问题,研究者们探索了多种技术路径,其中之一是“专家混合”(Mixture of Experts, MoE)架构。MoE通过条件计算(conditional computing)机制,动态选择输入的处理路径,只激活模型的一部分参数,从而显...

ECDformer:高效且可解释的电子圆二色光谱预测的解耦峰值属性学习

高效且可解释的电子圆二色光谱预测:Decoupled Peak Property Learning 学术背景 电子圆二色光谱(Electronic Circular Dichroism, ECD)是研究分子手性的关键工具,特别是在不对称有机合成和药物工业中,用于区分手性分子的绝对构型。然而,现有的ECD光谱预测方法存在两个主要问题:数据稀缺性和可解释性不足,导致预测结果的可信度较低。当前的ECD光谱预测依赖于耗时的量子化学计算,包括分子结构提取、构象搜索、结构优化、时间相关密度泛函理论(TD-DFT)计算和玻尔兹曼加权等步骤。这不仅需要实验化学家具备深厚的专业知识,还耗费大量的计算资源和时间。因此,如何加速ECD光谱的理论计算并提高其预测的准确性和可解释性,成为了一个亟待解决的问题。 论文来...

多模态学习用于基因型-表型动态映射

多模态学习揭示基因型-表型动态关系 背景介绍 基因型与表型之间的复杂关系一直是生物学领域的核心问题之一。基因型(genotype)指生物体的遗传信息,而表型(phenotype)则是这些遗传信息在特定环境下的表现。尽管早在1909年,Wilhelm Johannsen就提出了这两个术语,并试图量化它们之间的关系,但一个多世纪以来,我们仍然无法精确地描述基因型如何通过复杂的基因表达模式塑造表型。近年来,单细胞RNA测序(single-cell RNA sequencing, scRNA-seq)等技术的发展使得我们能够在细胞分辨率下观察基因表达的复杂动态,然而这些技术仍然无法全面映射基因型组合如何导致表型的产生。 当前的研究方法,如正向遗传学(forward genetics)和反向遗传学(r...