Classificateur de l'AVC : Classification de l'étiologie de l'accident vasculaire cérébral ischémique par modélisation par consensus d'ensemble utilisant des dossiers de santé électroniques

StrokeClassifier : Un outil d’intelligence artificielle pour la classification étiologique des AVC ischémiques basé sur les dossiers de santé électroniques Contexte du projet et motivation de la recherche La reconnaissance de l’étiologie des accidents vasculaires cérébraux (notamment les accidents ischémiques aigus, AIS) est cruciale pour la préven...

L'apprentissage auto-supervisé des données d'accéléromètres fournit de nouvelles perspectives sur le sommeil et sa relation avec la mortalité

L'apprentissage auto-supervisé des données d'accéléromètres fournit de nouvelles perspectives sur le sommeil et sa relation avec la mortalité

De Nouveaux Aperçus sur le Lien entre le Sommeil et la Mortalité Révélés par l’Analyse de Données d’Accéléromètres de Poignet en Auto-apprentissage Dans la société moderne, le sommeil, en tant qu’activité fondamentale nécessaire à la vie, est d’une importance évidente. Mesurer et classifier avec précision les états sommeil/éveil ainsi que les diffé...

Développement et validation d'algorithmes d'apprentissage automatique basés sur des électrocardiogrammes pour les diagnostics cardiovasculaires au niveau de la population

Développement et validation d’un algorithme d’apprentissage automatique à grande échelle pour le diagnostic cardiovasculaire basé sur l’ECG Introduction Les maladies cardiovasculaires (Cardiovascular diseases, CV) constituent depuis longtemps une source majeure de charge de morbidité à l’échelle mondiale. Le diagnostic et l’intervention précoces so...

Impact d'un modèle de prédiction de la septicémie basé sur l'apprentissage profond sur la qualité des soins et la survie

Impact du modèle de prédiction de la septicémie basé sur l’apprentissage profond sur la qualité des soins et la survie des patients Contexte de l’étude La septicémie est une réaction inflammatoire systémique causée par une infection, affectant environ 48 millions de personnes dans le monde chaque année, dont environ 11 millions meurent. En raison d...

Grands modèles de langage pour identifier les déterminants sociaux de la santé dans les dossiers de santé électroniques

Identification des déterminants sociaux de la santé dans les dossiers de santé électroniques par les grands modèles linguistiques Contexte et motivation de la recherche Les déterminants sociaux de la santé (DSH) ont une influence significative sur les résultats de santé des patients. Cependant, dans les données structurées des dossiers de santé éle...

Génération de Tuiles d'Images Synthétiques de Lames Entières de Tumeurs à partir de Données de Séquençage ARN via des Modèles de Diffusion en Cascade

Génération de Tuiles d'Images Synthétiques de Lames Entières de Tumeurs à partir de Données de Séquençage ARN via des Modèles de Diffusion en Cascade

Génération d’images synthétiques de lames entières de tumeurs à partir de données de séquençage d’ARN via des modèles de diffusion en cascade Une étude récemment publiée dans Nature Biomedical Engineering intitulée “Generation of Synthetic Whole-Slide Image Tiles of Tumours from RNA-Sequencing Data via Cascaded Diffusion Models” a suscité une large...