Study on the Piezoresistivity of Cr-Doped V2O3 Thin Film for MEMS Sensor Applications

Study on the Piezoresistivity of Cr-Doped V₂O₃ Thin Film for MEMS Sensor Applications Academic Background Piezoresistive microelectromechanical systems (MEMS) sensors are devices that utilize the piezoresistive effect of a material to convert stress changes, induced by the physical property being observed, into resistance changes. These sensors, su...

Revolutionary Self-Powered Transducing Mechanism for Long-Lasting and Stable Glucose Monitoring: Achieving Selective and Sensitive Bacterial Endospore Germination in Microengineered Paper-Based Platforms

Revolutionary Self-Powered Glucose Monitoring Mechanism: Microengineered Paper-Based Platform with Microbial Spores Academic Background Diabetes is a chronic metabolic disorder characterized by elevated blood glucose levels, which can lead to severe complications such as cardiovascular diseases, retinopathy, kidney failure, and neuropathy. The glob...

Nonlinear Coupling of Closely Spaced Modes in Atomically Thin MoS2 Nanoelectromechanical Resonators

Study of Nonlinear Coupling in Atomically Thin MoS₂ Nanoelectromechanical Resonators Academic Background With the rapid development of nanotechnology, Nanoelectromechanical Systems (NEMS) have shown great potential in fields such as sensors, signal processing, and quantum computing. Particularly, two-dimensional (2D) materials like molybdenum disul...

Coupling the Thermal Acoustic Modes of a Bubble to an Optomechanical Sensor

Coupling the Thermal Acoustic Modes of a Bubble to an Optomechanical Sensor Academic Background The acoustic behavior of bubbles in liquids has long been a significant research topic in physics and engineering. The vibrational modes of bubbles are not only closely related to acoustic phenomena in nature but also have broad applications in fields su...

Precision Autofocus in Optical Microscopy with Liquid Lenses Controlled by Deep Reinforcement Learning

Precision Autofocus in Optical Microscopy with Liquid Lenses Controlled by Deep Reinforcement Learning Academic Background Microscopic imaging plays a crucial role in scientific research, biomedical studies, and engineering applications. However, traditional microscopes and autofocus techniques face hardware limitations and slow software speeds in ...