Giant Electron-Mediated Phononic Nonlinearity in Semiconductor–Piezoelectric Heterostructures

Giant Electron-Mediated Phononic Nonlinearity in Semiconductor–Piezoelectric Heterostructures

Large Electron-Mediated Phonon Nonlinearity in Semiconductor-Piezoelectric Heterostructures In modern science and technology, the efficiency and determinacy of information processing are crucial determinants of its application potential. Nonlinear photonic interactions at optical frequencies have already demonstrated significant breakthroughs in bo...

Investigating Chiral Morphogenesis of Gold Using Generative Cellular Automata

Using Generative Cellular Automata to Study the Chiral Morphogenesis of Gold Background and Objectives Chirality is ubiquitous in nature and can be transferred and amplified between systems through specific molecular interactions and multi-scale couplings. However, the mechanisms of chiral formation and the critical steps during the growth process ...

Accelerating Ionizable Lipid Discovery for mRNA Delivery Using Machine Learning and Combinatorial Chemistry

Accelerating the Discovery of Ionizable Lipids for mRNA Delivery using Machine Learning and Combinatorial Chemistry Research Background To fully realize the potential of mRNA therapies, it is essential to expand the toolkit of lipid nanoparticles (LNPs). However, a key bottleneck in LNP development is identifying new ionizable lipids. Previous stud...

Clamping Enables Enhanced Electromechanical Responses in Antiferroelectric Thin Films

Study on Enhanced Electromechanical Response of Antiferroelectric Thin Films Based on Clamping Effect Background Antiferroelectric thin film materials have garnered significant attention for their potential applications in micro/nano electromechanical systems. These systems require materials with high electromechanical responses, capable of generat...

Sweet-spot operation of a germanium hole spin qubit with highly anisotropic noise sensitivity

Sweet-spot operation of a germanium hole spin qubit with highly anisotropic noise sensitivity

Optimal Working Point of Heavy Hole Spin Qubit in Germanium and Its High Anisotropic Noise Sensitivity Background and Motivation The development of quantum computers holds great promise for solving complex problems. However, building a fault-tolerant quantum computer requires the integration of a large number of highly coherent qubits. Spin qubits,...

A Programmable Topological Photonic Chip

A Programmable Topological Photonic Chip

Research Progress on Programmable Topological Photonic Chips Research Background In recent years, topological insulators (TI) have garnered significant attention in the physics community due to their rich physical mechanisms and the potential applications of topological boundary modes, leading to rapid development in this field. Since the discovery...