Preference Prediction-Based Evolutionary Multiobjective Optimization for Gasoline Blending Scheduling

Preference Prediction-Based Evolutionary Multiobjective Optimization for Gasoline Blending Scheduling Background Introduction With the continuous evolution of the global energy market, gasoline production and blending processes face increasing challenges. As a key product of the oil industry, gasoline’s blending and scheduling processes directly af...

Multilevel Ensemble Membership Inference Attack

In-depth Analysis of the Research Paper: MEMIA: Multilevel Ensemble Membership Inference Attack Introduction to the Research Background With the rapid development of digital technologies, artificial intelligence (AI) and machine learning (ML) have deeply permeated multiple domains, including healthcare, finance, retail, education, and social media....

Residual-Dense Network for Glaucoma Prediction Using Structural Features of Optic Nerve Head

Using Residual Dense Network (RD-Net) for Glaucoma Prediction Based on Structural Features of the Optic Nerve Head Background and Research Purpose Glaucoma is one of the leading causes of blindness worldwide, often referred to as the “silent thief of sight.” It is characterized by the progressive degeneration of the optic nerve head (ONH), resultin...

Policy Consensus-Based Distributed Deterministic Multi-Agent Reinforcement Learning

Policy Consensus-Based Distributed Deterministic Multi-Agent Reinforcement Learning Research Report Reinforcement Learning (RL) has made significant breakthroughs in recent years in various fields such as robotics, smart grids, and autonomous driving. However, in real-world scenarios, multi-agent collaboration problems, also known as Multi-Agent Re...

Spiking Diffusion Models

Brain-Inspired Low-Power Generative Model: A Review on Spiking Diffusion Models Background Overview In recent years, the artificial intelligence field has seen a surge in cutting-edge technologies, with deep generative models (DGMs) demonstrating exceptional capabilities in producing images, text, and other types of data. However, these generative ...

Face Forgery Detection Based on Fine-grained Clues and Noise Inconsistency

In-depth Exploration of Face Forgery Detection Based on Fine-Grained Clues and Noise Inconsistency Background Introduction With the rapid advancement of artificial intelligence (AI) technologies, various generative models have achieved remarkable progress. This has made it increasingly easy to generate highly realistic “deepfake” face images. These...