Multimodal Learning for Mapping Genotype–Phenotype Dynamics

Multimodal Learning Reveals Genotype–Phenotype Dynamics Background The complex relationship between genotype and phenotype has long been a central question in biology. Genotype refers to the genetic information of an organism, while phenotype is the manifestation of this genetic information in a specific environment. Although Wilhelm Johannsen intr...

Leveraging Pharmacovigilance Data to Predict Population-Scale Toxicity Profiles of Checkpoint Inhibitor Immunotherapy

Predicting and Monitoring the Toxicity of Immune Checkpoint Inhibitors: Breakthrough Application of the DysPred Deep Learning Framework Academic Background Immune checkpoint inhibitors (ICIs) represent a major breakthrough in cancer immunotherapy in recent years, enhancing the body’s antitumor immune response by inhibiting immune checkpoint signali...

Deep Bayesian Active Learning Using In-Memory Computing Hardware

With the rapid development of artificial intelligence (AI) technologies, deep learning has made significant progress in complex tasks. However, the success of deep learning largely relies on massive amounts of labeled data, and the data labeling process is not only time-consuming and labor-intensive but also requires specialized domain knowledge, m...

A Programmable Environment for Shape Optimization and Shapeshifting Problems

Research on Programmable Shape Optimization and Deformation Problems: Development and Application of the Morpho Environment Academic Background Soft materials play a crucial role in the fields of science and engineering, particularly in areas such as soft robotics, structured fluids, biological materials, and particulate media. These materials unde...

Approaching Coupled-Cluster Accuracy for Molecular Electronic Structures with Multi-Task Learning

Machine Learning Boosts Quantum Chemistry: Predicting Molecular Electronic Structures Approaching Coupled-Cluster Accuracy Academic Background In physics, chemistry, and materials science, computational methods are key tools for uncovering the mechanisms behind diverse physical phenomena and accelerating materials design. However, quantum chemistry...

A Spatiotemporal Style Transfer Algorithm for Dynamic Visual Stimulus Generation

Research Report on the Spatiotemporal Style Transfer Algorithm for Dynamic Visual Stimulus Generation Academic Background The encoding and processing of visual information has been a significant focus in the fields of neuroscience and vision science. With the rapid development of deep learning techniques, investigating the similarities between arti...