Expanding the Clinical Application of OPM-MEG Using an Effective Automatic Suppression Method for the Dental Brace Metal Artifact

Expanding the Clinical Application of OPM-MEG: An Effective Method for Automatically Suppressing Metal Artifacts from Dental Braces Background Magnetoencephalography (MEG) is a technique that uses multi-channel magnetic field measurement sensors to reconstruct the neural current distribution and functional networks of the brain. Compared to electro...

Analysis of Cerebral CT Based on Supervised Machine Learning as a Predictor of Outcome After Out-of-Hospital Cardiac Arrest

Brain CT Analysis as a Tool for Outcome Prediction after Out-of-Hospital Cardiac Arrest: A Supervised Machine Learning Analysis Research Background Out-of-Hospital Cardiac Arrest (OHCA) is one of the leading causes of death in the Western world, with extremely low survival rates, ranging from 3% to 16%. The neurological and overall outcomes after O...

Method for Localizing the Seizure Onset Zone in Refractory Epilepsy Patients

In recent years, refractory epilepsy has received increasing attention from the medical community. Refractory epilepsy is defined as the continuing occurrence of severe seizures despite treatment with two appropriate antiepileptic drugs. For patients who are unresponsive to drug treatment, if the seizure onset zone (SOZ) can be accurately localized...

Development and Validation of a Deep Learning Radiomics Model with Clinical-Radiological Characteristics for the Identification of Occult Peritoneal Metastases in Patients with Pancreatic Ductal Adenocarcinoma

Development and Validation of a Deep Learning Radiomics Model Combined with Clinical Radiological Features for Predicting Occult Peritoneal Metastasis in Patients with Pancreatic Ductal Adenocarcinoma Background Pancreatic ductal adenocarcinoma (PDAC) is an extremely lethal malignancy with a 5-year survival rate of approximately 11%. The poor progn...

Deep Learning Combining Mammography and Ultrasound Images to Predict the Malignancy of BI-RADS US 4a Lesions in Women with Dense Breasts: A Diagnostic Study

Research on Using Deep Learning to Combine Mammography and Ultrasound Images for Predicting Malignancy of BI-RADS US 4A Lesions in Women with Dense Breasts Background Breast cancer is the most common malignant tumor in women, with a relatively high incidence and mortality rate. Previous studies have found that women with dense breasts are more like...

Turning the Operating Room into a Mixed-Reality Environment: A Prospective Clinical Investigation for Cerebral Aneurysm Clipping

Turning the Operating Room into a Mixed-Reality Environment: A Prospective Clinical Investigation for Cerebral Aneurysm Clipping

Transforming the Operating Room into a Mixed Reality Environment: A Prospective Clinical Study on Aneurysm Clipping The surgical treatment of cerebral aneurysms is a highly complex and delicate process in neurosurgery. Researchers continue to explore new technologies and methods to improve surgical outcomes. In recent years, the development of Mixe...