复杂性状因果基因集合的生成式预测方法
利用生成式深度学习预测复杂性状的致因基因集:PNAS重磅新方法解读 一、学术背景与研究动机 复杂性状的困境 基因型与表型关系一直是生物学和遗传学领域最核心的问题之一。尤其在生物体级别的复杂性状(complex traits)研究中,这一问题尤为突出。所谓复杂性状,指的是表型受多基因(或多个基因位点,loci)协同作用调控,如常见的哮喘、炎症性肠病、糖尿病、癌症转移等。这些性状通常受遗传背景、表观遗传、环境因素等多重因素影响,使得从基因型预测表型变得异常困难。 现代遗传学研究主要依赖于全基因组关联研究(GWAS, genome-wide association studies)或转录组关联研究(TWAS, transcriptome-wide association studies)等关联分析...