深度学习在医学时间序列补全中的新视角

深度学习在医疗时序数据插补中的新视角 ——《How Deep Is Your Guess? A Fresh Perspective on Deep Learning for Medical Time-Series Imputation》综述解读 一、学术背景及研究动因 在医疗健康信息化日益发展的当下,电子健康记录(Electronic Health Records,简称EHR)正成为临床决策和医学研究最重要的数据来源之一。随着大规模、多模态医疗数据的生成,数据中缺失值(Missing Data)的问题日益显现,越来越多的临床预测模型、疾病风险预警系统以及流程优化应用,都绕不过时序数据缺失带来的严峻挑战。尤其是,EHR数据的复杂性和异质性使得传统统计插补方法与经典机器学习插补方法难以充分捕捉其...

基于单细胞多组学数据集的拷贝数变异推断工具基准测试

一、研究背景及意义 在肿瘤学和基因组研究领域,染色体拷贝数异常(Copy Number Alterations, CNAs)是导致癌症发生与进展的关键遗传变异类型。CNAs不仅决定了肿瘤的异质性,而且对早期肿瘤检测、肿瘤亚克隆(subclone)演化分析、耐药机制研究等具有重要意义。传统的检测拷贝数变异的方法主要依赖单细胞DNA测序(scDNA-seq),虽分辨率高,但受限于高昂成本及测序覆盖度低,难以在大规模、通量高的实际应用中广泛开展。 随着单细胞RNA测序(single-cell RNA sequencing, scRNA-seq)技术的普及与数据积累,研究者发现,基于scRNA-seq数据在一定条件下也能够反推出潜在的基因组拷贝数变化,这大大拓展了利用已有转录组数据挖掘基因组结构变异...

单细胞ATAC-Seq数据的基因集合评分算法基准测试

基因集合评分工具对单细胞ATAC-seq数据的基准测试 作者: Xi Wang, Qiwei Lian, Haoyu Dong, Shuo Xu, Yaru Su, Xiaohui Wu 单位: Pasteurien College(苏州大学苏州医学院),厦门大学自动化系,福州大学数学与计算机科学学院 通讯作者: xhwu@suda.edu.cn 期刊: 《Genomics, Proteomics & Bioinformatics》 发布日期: 2024年2月9日(在线公布) 导论 转座酶可及染色质测序(ATAC-seq)是一种强大且常用的表观基因组技术,通过测序分析全基因组范围内的染色质可及性。近来,单细胞ATAC-seq(scATAC-seq)技术使得研究单细胞中的染色质可及性成为可能,...