胶质瘤疾病预测:一种优化的集成机器学习方法

基于优化集成机器学习的胶质瘤疾病预测 论文背景与研究目的 在医学研究中,胶质瘤(gliomas)是最常见的原发性脑肿瘤,具有不同临床行为和治疗结果的多种癌症类型。胶质瘤患者预后的准确预测对治疗方案的优化和个性化患者护理至关重要。随着大规模基因组和临床信息的广泛可用,机器学习方法在创建可靠的胶质瘤预测模型方面展示了巨大潜力。本研究中的胶质瘤预测模型旨在通过集成多个机器学习算法(KStar 和 SMOReg)来提升胶质瘤预测的准确性和效率,从而为个性化医疗和改善患者预后提供帮助。 论文来源 这篇论文由 Jatin Thakur、Chahil Choudhary、Hari Gobind、Vipasha Abrol 和 Anurag 提交,他们均来自印度Mohali的Chandigarh Unive...

基于注意力引导的卷积神经网络框架用于3D MRI扫描的胶质瘤分割和分级

注意引导的CNN框架用于3D MRI扫描的胶质瘤分割和评级研究 胶质瘤是人类最致命的脑肿瘤形式,及时诊断这些肿瘤是有效肿瘤治疗的重要一步。磁共振成像(MRI)通常提供对脑部病变的无创检查。然而,手动检查MRI扫描中的肿瘤需要大量时间,并且容易出错。因此,自动诊断肿瘤在胶质瘤的临床管理和外科干预中起着至关重要的作用。在这项研究中,我们提出了一个基于卷积神经网络(CNN)的框架,用于从3D MRI扫描中无创分级肿瘤。 背景介绍 胶质瘤是常见且致命的脑肿瘤,根据其侵袭性和恶性程度可以分为四级。低级别肿瘤(I-III级)通常较不具侵袭性且对治疗反应较好。然而,高级别肿瘤(IV级)具有高度侵袭性,例如胶质母细胞瘤,其治疗效果较差,仅有5%的患者能存活5年。 为了使用医疗影像开展胶质瘤的研究,研究者通常...

利用透明机器学习与解释性AI提升胶质瘤预后

胶质瘤预后的透明化机器学习和解释性洞察力应用于解释性人工智能的赋能 学术背景 本研究致力于开发一种可靠的技术,来通过多种机器学习方法及深度学习方法,结合解释性人工智能(XAI,Explainable Artificial Intelligence)技术检测患者是否患有特定类型的脑肿瘤——胶质瘤。胶质瘤(glioma)是起源于胶质细胞的中枢神经系统癌症的一种,具有快速生长和侵袭健康脑组织的特性,常见的治疗方法包括手术、放射治疗、化疗等。通过整合患者数据,包括医疗记录、遗传档案等,机器学习算法能够预测每个个体对不同医疗干预的反应。 论文来源 该论文由Anisha Palkar、Cifha Crecil Dias(IEEE高级会员)、Krishnaraj Chadaga和Niranjana Sam...

基于群稀疏先验的荧光分子断层扫描用于胶质瘤形态重建

基于群稀疏先验的荧光分子断层成像用于胶质瘤形态重建技术的研究报告 一、学术背景和研究动机 荧光分子断层成像(Fluorescence Molecular Tomography,FMT)是一种重要的生命科学工具,通过该技术可以实现荧光源位置的非侵入实时三维(3D)可视化。由于其敏感度高、成本低的优点,FMT被广泛应用于肿瘤研究。然而,FMT的重建过程复杂且困难。尽管近年来FMT重建方法发展迅速,但形态重建依然是一个难题。因此,本研究的目的是在胶质瘤研究中实现FMT的形态重建性能。 二、论文来源与作者信息 本论文发表于IEEE Transactions on Biomedical Engineering期刊2020年5月第67卷第5期上,题为“Fluorescence Molecular Tom...

近红外窗口IIA/IIB荧光成像在胶质瘤手术中的临床研究

近红外窗口IIA/IIB荧光成像在胶质瘤手术中的临床研究

《IEEE生物医学工程汇刊》2022年8月,第69卷,第8期,首次临床研究:近红外窗口IIA/IIB荧光成像在胶质瘤精准手术切除中的应用 曹彩光、金泽萍、史晓菁、张哲、肖安琪、杨君英、计楠、田捷(IEEE会员)、胡振华(IEEE高级会员) 导言 在生物医学研究领域,荧光成像的高敏感性、高空间分辨率、实时成像能力和操作方便性使其受到广泛关注。本研究针对近红外窗口II(NIR-II,1000-1700纳米)成像技术在临床应用中的价值进行探索,以指导胶质瘤手术中切除瘤体的作用。作者结合了新开发的成像设备和术中图像融合方法,致力于提高手术的准确性,减少术中出血量,并最大限度地切除肿瘤。 文章来源 本研究由曹彩光、金泽萍、史晓菁、张哲、肖安琪、杨君英、计楠、田捷、胡振华进行。他们分别隶属于中科院自动化...