数据工程赋能的胶质瘤生存分析

脑胶质瘤患者的生存分析研究:数据工程赋能综述 引言 脑胶质瘤是一种在胶质细胞中发生的肿瘤,它们占全部原发性脑和中央神经系统肿瘤的26.7%。由于肿瘤异质性的存在,脑胶质瘤患者的生存分析成为了临床管理中的一个关键任务。在过去几十年里,研究者们提出了多种生存分析方法,结合不同类型的数据,如影像和遗传信息。尤其是近年来,机器学习技术和深度学习的兴起改变了传统的基于统计分析的生存分析方法。本文综述了利用诊断影像技术和基因组平台获得的预后参数,以及用于预后预测的技术、学习和统计分析算法,突出了现有生存预测研究的挑战,并提出了该领域研究的未来方向。 作者及出版信息 作者: Navodini Wijethilake (斯里兰卡莫拉图瓦大学计算机科学与工程系研究成员) 合著者: Dulani Meedeni...

基于贝叶斯推断的个体化胶质瘤生长预测

利用贝叶斯推断进行个性化预测胶质瘤生长 引言 胶质母细胞瘤(glioblastoma)是最具侵袭性的原发性脑肿瘤,肿瘤细胞会高度侵袭周围组织。通过标准医学成像技术无法准确识别这些弥漫性肿瘤边界,导致临床干预效果不佳且预后较差。由于此类挑战,依靠医学图像进行肿瘤空间和时空发育的可靠计算预测能够提供更多信息,有助于医生为每个个体设计最佳治疗方案。 近年来,多个关于肿瘤生长的生物物理模型通过非侵入性成像测量数据进行了开发和校准,旨在预测未来的肿瘤生长和治疗结果。然而,要实现预测肿瘤发展,必须解决两个关键挑战:一是需要量化模型预测中的不确定性,以改善个体治疗效果;二是需要表征肿瘤和宿主组织的空间异质性,这会对治疗的设计产生显著影响。 研究背景和动机 本研究的核心动机在于通过引入贝叶斯框架来解决上述两...

基于时序纵向磁共振成像的胶质瘤生长建模及其占位效应研究

肿瘤生长数学模型研究——利用纵向磁共振成像探究胶质瘤的扩展 近日发表在《IEEE Transactions on Biomedical Engineering》上的一篇文章,对胶质瘤(glioma)的数学建模及生长规律进行了系统性研究。该研究由Birkan Tunç、David A. Hormuth II、George Biros和Thomas E. Yankeelov完成,主要通过纵向磁共振成像(MRI)数据评估三种不同数学模型在模拟肿瘤生长以及质量效应(mass effect)中的性能差异。 研究背景 胶质母细胞瘤(glioblastoma multiforme, GBM)是最常见的原发性脑肿瘤,患者预后较差。GBM一个显著的特征是对周围脑组织的严重变形效应,即“质量效应”,目前已有大量...

高级胶质瘤预后的神经表观遗传标志

高级别胶质瘤中的神经上皮遗传标志与预后研究 背景与研究动机 高级别胶质瘤(glioma)是一种恶性程度极高的脑肿瘤,患者预后通常较差。先前的临床前模型研究表明,神经和肿瘤细胞之间的相互作用推动了肿瘤的生长,但在临床中验证这种机制仍然有限。为了解高级别胶质瘤的分子机制,研究人员提出了一种基于表观遗传学的神经标志(neural signature)用于预测患者生存期。通过分析中央神经系统(CNS)肿瘤的表观遗传学特征,研究人员希望识别出在临床上具有重要意义的子类。 研究来源 这篇文章由Richard Drexler等人撰写,他们分别来自德国汉堡大学医学中心、斯坦福大学等多个不同的研究机构。文章于2024年6月发表在《Nature Medicine》上。 研究流程与方法 研究流程 研究包含多个步骤...

使用多波长激发的荧光光谱法稳健估计荧光团的显式基线模型

研究背景 荧光光谱是一种广泛应用于识别和量化荧光物质(荧光团)的方法。然而,当材料中包含其他荧光团(基线荧光团)时,量化感兴趣的荧光团变得具有挑战性,特别是当基线的发射光谱未明确定义且与目标荧光团的发射光谱重叠时。为了准确区分并量化这些荧光物质,研究人员提出了基于多波长激发荧光光谱的新方法。这项研究的主要目标是解决基线荧光干扰这一问题,并提供一种无需先验假设的稳健估计算法。 论文来源 这篇名为《An Explicit Estimated Baseline Model for Robust Estimation of Fluorophores Using Multiple-Wavelength Excitation Fluorescence Spectroscopy》的论文,作者包括A. Ga...