基于源级EEG和图论的卒中后癫痫患者功能连接变化研究报告

基于源级EEG和图论的卒中后癫痫患者功能连接变化研究报告 研究背景 癫痫的病因多种多样,包括特发性、先天性、头部外伤、中枢神经系统感染、脑肿瘤、神经退行性疾病或者脑血管疾病(Disease)。其中,脑血管疾病占全部癫痫病例的约11%,是老年癫痫患者最常见的病因。同时,卒中后癫痫(Post-Stroke Epilepsy, PSE)是卒中患者常见的并发症之一,3%至30%的卒中患者可能会发展为PSE。卒中性癫痫的风险因素包括皮质参与、出血性转化、早期癫痫发作、年轻时发病、卒中严重程度(如高NIHSS评分)以及酗酒。 网络科学和图论被认为在理解脑功能上具有显著潜力。图论的图指标可反映网络的整合和隔离特性,因此被广泛应用于包括癫痫在内的各种神经系统疾病研究中。然而,尽管已有研究表明癫痫患者的脑网络...

基于卷积神经网络的耐药癫痫早期预测

研究背景及研究目的 癫痫是一种自发性且严重的神经系统疾病,表现为反复发作,全球有大约5000万人受其影响[1]。尽管近年来抗癫痫药物(ASM)的发展有所进步,药物难治性癫痫(Drug-Resistant Epilepsy,DRE)仍影响着20%到30%的癫痫患者[1-3]。DRE患者不仅面临巨大的经济、社会和心理负担,但需长时间的药物试验才能确诊。早期识别高风险患者,可以为施行如癫痫手术、神经调控或生酮饮食等治疗方式提供更早的干预。 以往的研究已指出DRE的风险因素包括:早期发病、高频率发作、脑电图(EEG)异常、神经缺陷、认知障碍、创伤史和颅内结构病变等[5-9]。然而,对于新诊断的癫痫患者,这些因素的重要性尚不明确,因此需要综合工具来早期识别高风险患者。 脑电图在癫痫领域扮演着不可或缺的...

基于多任务异构集成学习的跨学科EEG分类在中风患者中的应用

基于多任务异构集成学习的跨学科EEG分类在中风患者中的应用

背景介绍 运动意象(Motor Imagery, MI)指的是通过想象的方式进行活动而无需实际肌肉运动。这一范式在脑机接口(Brain-Computer Interface, BCI)中得到了广泛应用,用于将大脑活动解码为外部设备的控制指令。特别是,脑电图(Electroencephalography, EEG)因其相对廉价、移动方便且时间分辨率高于其他神经影像工具而广泛用于BCI。此外,这一范式可以帮助中风患者进行神经康复。据研究,机器人辅助的脑机接口训练可以提升中风患者的运动康复效果(参见论文[5]和[6])。这是因为在MI期间激活的神经通路与实际运动执行(Motor Execution, ME)的神经通路相似,因此,通过想象这种方式也可能促使感知运动区域的神经通路激活,从而帮助中风后的...

基于深度学习的实时视觉学习者识别模型

在如今的教育环境中,理解学生的学习风格对提高他们的学习效率至关重要。特别是视觉学习风格(visual learning style)的识别,有助于教师和学生在教学和学习过程中采取更有效的策略。目前,自动识别视觉学习风格主要依靠脑电图(Electroencephalogram, EEG)和机器学习技术。然而,这些技术通常需要离线处理来消除伪影和提取特征,从而限制了其在实时应用中的适用性。 这项由Soyiba Jawed、Ibrahima Faye和Aamir Saeed Malik在《IEEE Transactions on Neural Systems and Rehabilitation Engineering》上发表于2024年的研究,提出了一种基于深度学习技术的实时视觉学习者识别模型,...

使用柔性多通道基于OPM的MEG系统测量人类听觉诱发场

使用柔性多通道基于OPM的MEG系统测量人类听觉诱发场

使用柔性多通道光泵磁力计MEG系统测量人类听觉诱发场 Xin Zhang等人,来自中国科学院苏州生物医学工程技术研究所、中国科学技术大学、中国广东省佛山季华实验室和山东省济南国科医疗技术发展有限公司等,于2024年发表在《j. integr. neurosci.》上的一篇研究论文。 背景 磁脑图(Magnetoencephalography, MEG)是一种非侵入性成像技术,可以直接测量大脑中同步激活的锥体神经元产生的外部磁场。光泵磁力计(Optically Pumped Magnetometer, OPM)以其低成本、无需低温、可移动和用户友好的定制设计,展现了在基于MEG的功能性神经成像中的巨大潜力。然而传统的MEG系统由于设备体积大、复杂和重量重,限制了实验的灵活性,无法适应儿童、婴儿...