从医疗数字孪生到虚拟人类孪生:数字健康研究的登月计划

从数字孪生到虚拟人类孪生体:数字健康领域的“登月计划” 一、学术背景与研究动因 当前,全球医疗健康体系依然存在诸多未被满足的临床和社会需求,其表现例如治疗选择的缺乏、不足与昂贵的医疗资源、漫长的候诊时间,以及对儿童和罕见病等弱势群体关注的不足(unmet needs)。尽管医学对健康和疾病的生理机制理解不断加深,新的诊疗技术也在持续涌现,但医疗服务的普及性、效率和个性化始终有所欠缺。为此,医学界和产业界不断探索以数字化和信息化手段推动变革。 类似于人类基因组计划(Human Genome Project)彻底解读人类遗传信息,IUPS生理组项目(Physiome Project)首次提出了“系统性数字化动态人类生理模型”的构想,即构建包含全部已知人类病理生理特征的虚拟“数字人类”模型。而后,...

PlantCaduceus:利用预训练DNA语言模型实现单碱基分辨率植物基因组跨物种建模

植物基因组跨物种建模的里程碑:PlantCaduceus DNA语言模型的创建与突破性应用 一、学术背景与研究动因 在过去二十年里,伴随高通量测序技术的飞速发展,超过1000种植物基因组已经发表,预计未来这一数字还将持续激增。然而,对这些庞大基因组的功能元素进行注释、理解它们在转录和翻译层面的表达调控,以及分析不同遗传变异对于生物个体适应性和性状的影响,一直是植物基因组学乃至作物改良领域中亟需突破的“瓶颈”问题。 相较于动物和人类,植物基因组拥有更复杂的结构,表现为基因组大小巨大、重复序列比例极高、物种间多样性极强,甚至同属同种内部亦具有极大变异。因此,基于单一物种构建的深度学习(deep learning,DL)模型,往往只在特定物种内表现良好,难以跨物种泛化。这极大限制了新测序植物(尤其...

面向偏差感知的网络生物学链路预测算法的训练与评估

揭示连边预测算法的“富节点”偏见及其应对新策略 —— 解读“Bias-aware Training and Evaluation of Link Prediction Algorithms in Network Biology” 一、学术背景与研究缘起 在过去的十年里,生物网络(network biology)在揭示生物分子关联与功能方面扮演着愈加重要的角色。随着蛋白-蛋白互作(protein–protein interaction, PPI)、疾病基因关系等大规模图谱数据不断丰富,基于图机器学习的连边预测(link prediction, 连边意指网络中节点之间的关联)成为生物信息学和计算生物学中的核心工具。连边预测算法被广泛用于发现未知的生物分子关联,有助于药物靶点发现、疾病机制研究、实...

DeepRNA-Twist:基于语言模型引导的RNA扭转角预测与注意力-初始网络

一、学术背景及研究动机 随着生命科学与生物信息学的飞速发展,RNA分子结构及其功能研究成为热点领域。RNA不仅仅是基因信息的传递者,更在调控、催化等多种生理过程中扮演关键角色。RNA分子的三维结构直接影响其生物学功能,而RNA结构的精确解析对于基础科学、药物设计、疾病机制研究等均具有重要意义。然而,RNA的序列到结构转换远比蛋白质复杂,不仅因为RNA的骨架有七个主链扭转角(α, β, γ, δ, ε, ζ, χ),而且还涉及复杂的伪扭转角(η, θ),加之非经典碱基对、多重环、三元作用等多样结构因素,使得高精度RNA三维结构预测极具挑战性。 传统的实验测定RNA结构方法如核磁共振(NMR)、X射线晶体学(X-ray crystallography)、冷冻电镜(cryo-EM)手段,不但昂贵且...

揭秘三维基因组预测新引擎:CHROMBUS-XMBD——图卷积模型驱动的染色质互作预测

研究背景与学科意义 在真核细胞内,染色质(Chromatin)的三维空间结构对于基因表达调控有着至关重要的作用。DNA通过复杂的折叠、环化及局部空间重构,使不同基因元件(如启动子promoter、增强子enhancer等)在空间上变得邻近,并实现精细的顺式(cis)调控。近年来,无论在发育生物学、疾病机理还是表观遗传学研究中,三维基因组(3D-genome)的动态结构都被反复证明与基因表达变化密切相关。 当前,捕捉基因组空间构象的实验方法主要包括3C、4C、5C、Hi-C、ChIA-PET、HiChIP等。然而,这些实验方法成本高昂、操作复杂,且常常受到生物材料来源、分辨率及信噪比等条件限制,难以为多样化的生物学问题或疾病研究大规模提供数据。与此同时,随着多组学数据的积累,尤其是DNA序列、...

基于矩阵补全的集成学习提高微生物-疾病关联预测

学术背景与研究问题 微生物作为地球上最广泛存在的生命形式之一,与海洋、土壤以及人类自身均有密切关系。人体内约含有350万亿个微生物细胞(microbial cells),与人类健康、疾病的发生和发展息息相关。近年来,随着测序技术与生物信息学的快速进步,大量研究聚焦于阐明人体微生态(microbiome)组成及其功能对健康产生的影响。例如,肠道菌群组成的变化能够影响机体免疫和疾病发生,肝脏代谢也被证实受肠道微生物调控,会通过降低能量消耗、促进脂肪沉积等促进代谢疾病发展。 尽管实验生物医学对微生物-疾病(microbe-disease)关联的揭示已做出巨大努力,但已被实验确定的疾病相关微生物数量仍十分有限,传统实验方法既耗时又高成本,因此亟需高效、精准的计算方法,用于筛查潜在的微生物-疾病关联。...