Prédiction du grade de gliome à l'aide des caractéristiques radiomiques intratumorales et péritumorales à partir d'images IRM multiparamétriques

《Prévision des Grades des Gliomes Basée sur les Caractéristiques Radiomiques Intra- et Extra-Tumorales à partir d’Images IRM Multiparamétriques》 Contexte de l’Étude Les gliomes représentent les tumeurs cérébrales primitives les plus fréquentes du système nerveux central, constituant 80 % des tumeurs cérébrales malignes chez l’adulte. Dans la pratiq...

Réseau de convolution graphique guidé par la similarité à l'auto-attention pour la recherche sur la classification des gliomes de bas grade de plusieurs types

Réseau de convolution graphique guidé par la similarité à l'auto-attention pour la recherche sur la classification des gliomes de bas grade de plusieurs types

Réseau de Convolution Graphique Guidé par la Similarité Auto-attention pour la Classification des Gliomes de Bas Grade Multitypes I. Contexte de la Recherche Les gliomes de bas grade sont une forme courante de tumeur cérébrale maligne, causée par la transformation cancérogène des cellules gliales dans le cerveau et la moelle épinière. Ils se caract...

Algorithme de radiomique alimenté par IA basé sur le regroupement de tranches pour le classement des gliomes

Algorithme de radiomique alimenté par IA basé sur le regroupement de tranches pour le classement des gliomes

Algorithme de radiomique d’imagerie pour la gradation des gliomes basé sur le pooling de tranches et assisté par l’IA Introduction Les gliomes sont les tumeurs les plus courantes et les plus menaçantes du système nerveux central, caractérisées par une haute incidence, de fréquentes récidives, une mortalité élevée et un faible taux de guérison. L’Or...

Prédiction de la Maladie des Gliomes : Une Approche Optimisée Basée sur l'Apprentissage Automatique en Ensemble

Prédiction de la maladie du gliome basée sur une machine à apprendre intégrée optimisée Contexte et objectifs de la recherche Dans la recherche médicale, les gliomes sont les tumeurs cérébrales primaires les plus communes, regroupant plusieurs types de cancer avec différents comportements cliniques et résultats thérapeutiques. Une prédiction précis...

Classification non invasive des gliomes par réseau de neurones convolutionnel léger basé sur la distillation de connaissances

Étude sur la classification non invasive des gliomes : Réseau de neurones convolutifs léger basé sur la distillation des connaissances Introduction Les gliomes sont les principaux types de tumeurs du système nerveux central, et leur détection précoce est extrêmement importante. L’Organisation Mondiale de la Santé (OMS) classe les gliomes en quatre ...

Autoencodeur Variationnel Désentrelacé Multimodal avec Interprétabilité Théorique pour la Classification des Gliomes

Application du Variational Autoencoder Démêlant Multimodal et de l’Interprétabilité Basée sur la Théorie des Jeux dans la Classification des Gliomes Introduction Dans le système nerveux central, les gliomes sont les tumeurs cérébrales primaires les plus courantes. Selon les activités cellulaires et le degré d’invasion, l’Organisation Mondiale de la...