Classification EEG Motor Imagery Basé sur l'Apprentissage Profond en Exploitant la Connectivité Fonctionnelle de l'Imagerie de Source Corticale

Basé sur l’apprentissage profond pour la classification des EEG d’imagerie motrice en utilisant la connectivité fonctionnelle de l’imagerie des sources corticales Contexte et motivations de la recherche Les interfaces cerveau-ordinateur (ICO) sont des systèmes qui permettent de décoder directement et de transmettre des informations sur l’activité c...

Un CNN d'apprentissage de la dépendance temporelle avec mécanisme d'attention pour le décodage MI-EEG

Un réseau de neurones convolutifs (CNN) de dépendance temporelle basé sur un mécanisme d’attention pour le décodage MI-EEG Contexte de recherche et description du problème Les systèmes d’Interface Cerveau-Machine (Brain-Computer Interface, BCI) offrent une nouvelle voie de communication avec les ordinateurs en traduisant en temps réel les signaux c...

Apprentissage profond informé par la physique pour la modélisation musculo-squelettique: Prédire les forces musculaires et la cinématique des articulations à partir de l'EMG de surface

Les modèles musculosquelettiques ont été largement utilisés pour les analyses biomécaniques car ils peuvent estimer des variables de mouvement difficiles à mesurer directement in vivo (comme les forces musculaires et les moments articulaires). Les modèles musculosquelettiques entraînés de manière traditionnelle par des processus physiques peuvent e...

Réseau Neuronal Convolutionnel d'Attention Multi-Caractéristiques pour le Décodage de l'Imagination Motrice

Le Brain-Computer Interface (BCI) est un moyen de communication reliant le système nerveux à l’environnement extérieur. La Motor Imagery (MI) est la fondation de la recherche BCI, elle se réfère à la répétition interne avant l’exécution du mouvement. Les technologies non invasives, telles que l’électroencéphalographie (EEG), permettent d’enregistre...

Découverte des mécanismes neuronaux de la restauration de l'équilibre inter-hémisphérique dans les AVC chroniques grâce à la rééducation de la main par un robot piloté par EMG : Perspectives de la modélisation causale dynamique

Découverte des mécanismes neuronaux de la restauration de l'équilibre inter-hémisphérique dans les AVC chroniques grâce à la rééducation de la main par un robot piloté par EMG : Perspectives de la modélisation causale dynamique

Découvrir les mécanismes neurologiques de la récupération de l’équilibre interhémisphérique chez les patients AVC chroniques grâce à l’entraînement de la main robotique pilotée par EMG : Aperçus du modèle causal dynamique L’AVC est une cause fréquente de handicap, avec la majorité des survivants souffrant de paralysie du membre supérieur. Les consé...