使用多波长激发的荧光光谱法稳健估计荧光团的显式基线模型

研究背景 荧光光谱是一种广泛应用于识别和量化荧光物质(荧光团)的方法。然而,当材料中包含其他荧光团(基线荧光团)时,量化感兴趣的荧光团变得具有挑战性,特别是当基线的发射光谱未明确定义且与目标荧光团的发射光谱重叠时。为了准确区分并量化这些荧光物质,研究人员提出了基于多波长激发荧光光谱的新方法。这项研究的主要目标是解决基线荧光干扰这一问题,并提供一种无需先验假设的稳健估计算法。 论文来源 这篇名为《An Explicit Estimated Baseline Model for Robust Estimation of Fluorophores Using Multiple-Wavelength Excitation Fluorescence Spectroscopy》的论文,作者包括A. Ga...

多级特征探索与融合网络用于MRI中IDH状态的预测研究

多级特征探索与融合网络用于MRI中IDH状态的预测研究 研究背景 胶质瘤是成年人中最常见的恶性原发性脑肿瘤。根据2021年世界卫生组织(WHO)对肿瘤的分类,基因型在肿瘤亚型划分中具有重要意义,尤其是异柠檬酸脱氢酶(IDH)基因型在诊断胶质瘤时极为重要。临床研究表明,携带IDH突变的胶质瘤通过特定的表观遗传变异特征驱动,影响酶活性、细胞代谢和生物特性;相较于携带IDH野生型的胶质瘤,携带IDH突变的胶质瘤对替莫唑胺更敏感,预后更好。目前,IDH状态的确定主要依赖于在侵入性手术后对组织标本进行基因测序或免疫组织化学分析。然而,侵入性操作可能延误最终治疗决策,甚至导致肿瘤转移。因此,迫切需要通过非侵入性的方法在术前预测IDH状态(IDH prediction),以便为胶质瘤患者制定适当的治疗方案...

基于Siamese-Transport域适应框架的3D MRI胶质瘤和阿尔茨海默病分类

基于Siamese-Transport域适应框架的3D MRI胶质瘤和阿尔茨海默病分类 研究背景 在计算机辅助诊断中,3D磁共振成像(MRI)筛查对于早期诊断各类脑部疾病具有重要作用,可以有效防止病情恶化。胶质瘤是一种常见的恶性脑肿瘤,其治疗方案因肿瘤级别的不同而有所不同。因此,准确高效的3D MRI分类在医学影像分析中至关重要。然而,传统的深度学习模型在应用于临床获得的无标签数据时,表现会严重退化,主要原因是域间不一致性,如不同设备类型和数据获取参数的差异。现有的方法主要集中在减少域间差异,但忽略了语义特征和域信息的纠缠。 论文来源 本文由Shandong University的Luyue Yu,Ju Liu,Qiang Wu,Jing Wang和Aixi Qu等人撰写,发表在2024年1...

评估胶质瘤生长模型在肿瘤切除后低级别胶质瘤中的预测价值

评估低级别胶质瘤术后生长模型预测价值的研究综述 引言 胶质瘤是一种侵袭性脑肿瘤,其细胞在脑内快速扩散。理解和预测这种扩散的模式和速度可以帮助优化治疗方案。基于扩散-增殖模型的胶质瘤生长模型已经展示出可行性,但在实际临床数据中应用和评估这些模型仍有挑战。为了改进对此问题的评估,本研究提出将肿瘤生长问题视为排序问题,并使用平均精度(Average Precision, AP)作为指标。这一方法无需特定的体积阈值,能够更准确地评估空间模式。 研究来源 该论文由Karin A. van Garderen、Sebastian R. van der Voort、Maarten M. J. Wijnenga等人撰写,作者来自荷兰鹿特丹伊拉斯姆斯医学中心的放射学和核医学、神经外科、病理和神经学等部门。论文发...

神经外科中的激光间质热疗法:单一外科医生对313名患者的经验

神经外科中的激光间质热疗法:单一外科医生对313名患者的经验

神经外科激光间质热疗(LITT)临床研究报告 背景介绍 随着现代医学技术的不断进步,激光间质热疗(Laser Interstitial Thermal Therapy, LITT)在神经外科肿瘤治疗领域中逐渐占据了一席之地,尤其是在治疗难以接近或对常规治疗抵抗的颅内病灶方面。1–5 LITT是一种微创的热消融技术,能够在不损伤健康组织的前提下,精准定位并消融病灶,使得许多传统手术难以到达的区域得以治疗。2,6,7 在过去的十年里,LITT的应用迅速扩展,涵盖了新诊断和复发的胶质瘤、转移瘤、硬脑膜病变以及放射性坏死(Radiation Necrosis, RN)等多种颅内肿瘤。8–12 进一步的研究显示,LITT还可以通过破坏血脑屏障和去血管化病灶组织,增强辅助疗法的效果,例如促进化疗药物的扩...

拉曼光谱平台揭示IDH突变和野生型胶质瘤的独特代谢差异

基于拉曼光谱和机器学习平台的IDH突变与野生型胶质瘤细胞代谢差异研究 背景介绍 在胶质瘤的诊断和治疗中,福尔马林固定、石蜡包埋(FFPE)组织切片通常被广泛应用。然而,受到包埋介质背景噪声的影响,FFPE组织在基于拉曼光谱的研究中应用有限。为了克服这一问题并识别肿瘤亚型,本研究开发了一种新型的基于拉曼光谱的机器学习平台——APOLLO(恶性胶质瘤的拉曼光谱病理学),该平台能够从FFPE组织切片中预测胶质瘤亚型。 论文来源 这篇文章由Adrian Lita、Joel Sjöberg、David Păcioianu等学者撰写,作者来自美国国立癌症研究所(National Cancer Institute)、芬兰图尔库大学(University of Turku)、罗马尼亚布加勒斯特大学(Univ...