基于卷积神经网络的耐药癫痫早期预测

研究背景及研究目的 癫痫是一种自发性且严重的神经系统疾病,表现为反复发作,全球有大约5000万人受其影响[1]。尽管近年来抗癫痫药物(ASM)的发展有所进步,药物难治性癫痫(Drug-Resistant Epilepsy,DRE)仍影响着20%到30%的癫痫患者[1-3]。DRE患者不仅面临巨大的经济、社会和心理负担,但需长时间的药物试验才能确诊。早期识别高风险患者,可以为施行如癫痫手术、神经调控或生酮饮食等治疗方式提供更早的干预。 以往的研究已指出DRE的风险因素包括:早期发病、高频率发作、脑电图(EEG)异常、神经缺陷、认知障碍、创伤史和颅内结构病变等[5-9]。然而,对于新诊断的癫痫患者,这些因素的重要性尚不明确,因此需要综合工具来早期识别高风险患者。 脑电图在癫痫领域扮演着不可或缺的...

基于多任务异构集成学习的跨学科EEG分类在中风患者中的应用

基于多任务异构集成学习的跨学科EEG分类在中风患者中的应用

背景介绍 运动意象(Motor Imagery, MI)指的是通过想象的方式进行活动而无需实际肌肉运动。这一范式在脑机接口(Brain-Computer Interface, BCI)中得到了广泛应用,用于将大脑活动解码为外部设备的控制指令。特别是,脑电图(Electroencephalography, EEG)因其相对廉价、移动方便且时间分辨率高于其他神经影像工具而广泛用于BCI。此外,这一范式可以帮助中风患者进行神经康复。据研究,机器人辅助的脑机接口训练可以提升中风患者的运动康复效果(参见论文[5]和[6])。这是因为在MI期间激活的神经通路与实际运动执行(Motor Execution, ME)的神经通路相似,因此,通过想象这种方式也可能促使感知运动区域的神经通路激活,从而帮助中风后的...

基于深度学习的实时视觉学习者识别模型

在如今的教育环境中,理解学生的学习风格对提高他们的学习效率至关重要。特别是视觉学习风格(visual learning style)的识别,有助于教师和学生在教学和学习过程中采取更有效的策略。目前,自动识别视觉学习风格主要依靠脑电图(Electroencephalogram, EEG)和机器学习技术。然而,这些技术通常需要离线处理来消除伪影和提取特征,从而限制了其在实时应用中的适用性。 这项由Soyiba Jawed、Ibrahima Faye和Aamir Saeed Malik在《IEEE Transactions on Neural Systems and Rehabilitation Engineering》上发表于2024年的研究,提出了一种基于深度学习技术的实时视觉学习者识别模型,...

使用柔性多通道基于OPM的MEG系统测量人类听觉诱发场

使用柔性多通道基于OPM的MEG系统测量人类听觉诱发场

使用柔性多通道光泵磁力计MEG系统测量人类听觉诱发场 Xin Zhang等人,来自中国科学院苏州生物医学工程技术研究所、中国科学技术大学、中国广东省佛山季华实验室和山东省济南国科医疗技术发展有限公司等,于2024年发表在《j. integr. neurosci.》上的一篇研究论文。 背景 磁脑图(Magnetoencephalography, MEG)是一种非侵入性成像技术,可以直接测量大脑中同步激活的锥体神经元产生的外部磁场。光泵磁力计(Optically Pumped Magnetometer, OPM)以其低成本、无需低温、可移动和用户友好的定制设计,展现了在基于MEG的功能性神经成像中的巨大潜力。然而传统的MEG系统由于设备体积大、复杂和重量重,限制了实验的灵活性,无法适应儿童、婴儿...

基于注意力引导的图结构学习网络用于基于EEG的听觉注意力检测

基于注意力引导的图结构学习网络用于基于EEG的听觉注意力检测

注意引导的图结构学习网络在基于EEG的听觉注意检测中的应用 学术背景 “鸡尾酒会效应”描述了人类大脑在多说话者环境中选择性集中注意力于一个说话者而忽略其他人的能力。然而,对于听力受损者来说,这种情况构成了一个重大挑战。尽管现代听觉假体如助听器和人工耳蜗在减噪方面有效,但它们往往无法区分听者所要关注的信号。听觉注意检测(Auditory Attention Detection,AAD)任务解决此问题的潜力在于,它直接从大脑中提取与注意力相关的信息。神经科学研究表明,非侵入性的神经记录技术,如脑电图(Electroencephalography,EEG),在解码听觉注意方面具有巨大潜力。为了解决EEG信号的解码问题,研究人员开发了各种方法来解释EEG信号,并由此确定注意力,调整助听器性能。 论文...

通过视觉运动整合任务揭示脑功能网络的变化

机能脑网络在视觉运动任务中的重组变化 研究背景 运动执行是一个复杂的认知功能,依赖于空间上接近和远离的脑区的协调激活。视觉运动整合任务需要处理和解释视觉输入以规划运动执行,并调整人类运动以与环境互动。基于功能性磁共振成像(fMRI)的研究表明,前额叶和顶叶区域在视觉运动整合过程中起着重要作用。此外,sensorimotor皮层也涉及其中。然而,现有研究主要使用fMRI技术探索这些过程,对于脑电图(EEG)信号的研究相对较少。 在诸多研究中,通过功能连接性分析明确了不同脑区之间的统计依赖关系,并研究它们在不同条件下如何相互作用和交流。有研究通过脑磁图(MEG)和颅内EEG探讨了大脑在gamma波段的连接性,发现大脑在视觉运动过程中的动态参与。此外,基于脑电图的研究确认了前顶叶区域在视觉运动过程...

贝叶斯估计群体事件相关电位成分

背景介绍 事件相关电位(Event-Related Potentials,ERPs)的研究提供了关于大脑机制的重要信息,尤其在解释各种心理过程时具有独特优势。在这些研究中,通常在被试执行特定任务时记录多通道脑电图(EEG),根据刺激类型和被试反应将试验分为不同类别,并取各类别试验的平均值计算ERPs。记录头皮表面的ERPs有较好的时间分辨率,但由于体积传导效应,其空间分辨率较低。 解决体积传导问题的一种方法是使用盲源分离(Blind Source Separation,BSS)方法。若BSS方法用在单次试验数据间,其主要目标是更准确地刻画个体ERPs;若BSS方法用在个体ERPs数据间,其主要目标是识别大脑反应的共性特征。然而,目前的大多数BSS算法并不能充分考虑ERPs噪声的复杂特性:空间...

低频正弦磁场诱导的人类磁磷光感知的阈值和机制

电感磷光感知的阈值与机制 背景介绍 电磁场(Magnetic Field,简称MF)对人类身体的影响一直是科学研究的热点。极低频磁场(Extremely Low-Frequency Magnetic Field,简称ELF-MF)在日常生活中广泛存在,主要来源于电力线(50/60 Hz)和家庭电器。这些磁场在人体内会感应出电场和电流,进而可能调节大脑功能。一个特定现象——电磁磷光(Magnetophosphene),即由于磁场诱发的闪烁视觉感知,是国际电磁场暴露指导方针的基础之一。 电磁磷光现象早在1896年由法国医生Jacques-Arsène d’Arsonval首次观察到,该现象后来在一些小型非重复性研究中得到验证。近几十年来,关于电磁磷光的研究却相对较少,尤其是在家庭频率(即50 H...

一种可视化脑表面神经元活动的脑电图微显示器

一种可视化脑表面神经元活动的脑电图微显示器

一种可视化脑表面神经元活动的脑电图微显示器 背景介绍 当前脑外科手术的功能性映射主要依赖于神经外科医生与电生理学家之间的语言交流。这些过程耗时且存在有限的分辨率。此外,用于测量脑活动的电极网格分辨率较低,且难以与脑表面充分贴合。为了更有效地在手术过程中实时监测和显示脑表面神经元活动,本研究提出并开发了一种具有2048个氮化镓(GaN)发光二极管(LED)的脑内电生理学微型显示屏(iEEG microdisplay)。 研究概览 本文由Youngbin Tchoe等人所写,分别隶属于加利福尼亚大学圣地亚哥分校的电子与计算机工程系、生物医学工程系、麻醉学系、神经外科系以及其他科室。该论文发表于2024年4月24日的《Science Translational Medicine》。 研究工作流程 ...

小脑-橄榄体神经元群体活动编码小鼠和患者的特发性震颤频率

小脑-橄榄体神经元群体活动编码小鼠和患者的特发性震颤频率 研究背景 特发性震颤(Essential Tremor, ET),是一种以动作震颤为主要特征的常见运动障碍,影响约20%的老年人口。震颤的频率和强度是ET的一些核心特征。然而,目前对震颤频率编码的神经机制仍然缺乏了解,致使现行的治疗方法在许多患者中效果并不理想,大约有一半的患者对目前的药物治疗没有反应,外科手术如深部脑刺激(DBS)虽然初步效果较好,但通常会产生治疗耐受。 近年来,研究表明小脑的突触修剪缺陷和攀爬纤维的过度生长会导致增强的小脑振荡和ET震颤。然而,确定震颤频率的具体神经编码机制仍不明确。这一研究空白使得对ET更有效的治疗缺乏理论依据。 论文来源 这篇论文的主要作者是Yi-Mei Wang等,研究团队主要来自Nation...