DeepSleepNet: A Model for Automatic Sleep Stage Scoring Based on Raw Single-Channel EEG

DeepSleepNet: An Automatic Sleep Stage Scoring Model Based on Single-Channel EEG Background Introduction Sleep has a significant impact on human health, and monitoring sleep quality is crucial in medical research and practice. Typically, sleep experts score sleep stages by analyzing various physiological signals such as electroencephalogram (EEG), ...

Vision Transformers, Ensemble Model, and Transfer Learning Leveraging Explainable AI for Brain Tumor Detection and Classification

In recent years, due to the high incidence and lethality of brain tumors, rapid and accurate detection and classification of brain tumors have become particularly important. Brain tumors include both malignant and non-malignant types, and their abnormal growth can cause long-term damage to the brain. Magnetic Resonance Imaging (MRI) is a commonly u...

Physics-Informed Deep Learning for Musculoskeletal Modeling: Predicting Muscle Forces and Joint Kinematics from Surface EMG

Musculoskeletal models have been widely used in biomechanical analysis because they can estimate motion variables that are difficult to measure directly in living organisms, such as muscle forces and joint moments. Traditional physics-driven computational musculoskeletal models can explain the dynamic interactions between neural inputs to muscles, ...

Deep Learning-Based Assessment Model for Real-Time Identification of Visual Learners Using Raw EEG

In the current educational environment, understanding students’ learning styles is crucial for improving their learning efficiency. Specifically, the identification of visual learning styles can help teachers and students adopt more effective strategies in the teaching and learning process. Currently, automatic identification of visual learning sty...

Development and Validation of a Deep Learning Radiomics Model with Clinical-Radiological Characteristics for the Identification of Occult Peritoneal Metastases in Patients with Pancreatic Ductal Adenocarcinoma

Development and Validation of a Deep Learning Radiomics Model Combined with Clinical Radiological Features for Predicting Occult Peritoneal Metastasis in Patients with Pancreatic Ductal Adenocarcinoma Background Pancreatic ductal adenocarcinoma (PDAC) is an extremely lethal malignancy with a 5-year survival rate of approximately 11%. The poor progn...