Deep Learning Combining Mammography and Ultrasound Images to Predict the Malignancy of BI-RADS US 4a Lesions in Women with Dense Breasts: A Diagnostic Study

Research on Using Deep Learning to Combine Mammography and Ultrasound Images for Predicting Malignancy of BI-RADS US 4A Lesions in Women with Dense Breasts Background Breast cancer is the most common malignant tumor in women, with a relatively high incidence and mortality rate. Previous studies have found that women with dense breasts are more like...

Artificial Intelligence-Based Classification of Breast Lesion from Contrast Enhanced Mammography: A Multicenter Study

Multi-center Study on Artificial Intelligence-based Classification of Breast Lesions In the field of breast cancer, early diagnosis is crucial for improving treatment efficacy and survival rate. Breast cancer can be mainly divided into two categories: in situ carcinoma and invasive carcinoma, which have significant differences in treatment strategi...

Diffusion-based Deep Learning Method for Augmenting Ultrastructural Imaging and Volume Electron Microscopy

Diffusion-based Deep Learning Method for Augmenting Ultrastructural Imaging and Volume Electron Microscopy

Enhancing Super-Resolution Imaging and Volume Electron Microscopy with Deep Learning Algorithms Based on Diffusion Models Background Introduction Electron Microscopy (EM) as a high-resolution imaging tool has made significant breakthroughs in cell biology. Traditional EM techniques are primarily used for two-dimensional imaging, and although they h...

A Systematic Evaluation of Euclidean Alignment with Deep Learning for EEG Decoding

Systematic Evaluation of Euclidean Alignment with Deep Learning for EEG Decoding Background Introduction Electroencephalogram (EEG) signals are widely used in brain-computer interface (BCI) tasks due to their non-invasive nature, portability, and low acquisition cost. However, EEG signals suffer from low signal-to-noise ratio, sensitivity to electr...

Investigating Chiral Morphogenesis of Gold Using Generative Cellular Automata

Using Generative Cellular Automata to Study the Chiral Morphogenesis of Gold Background and Objectives Chirality is ubiquitous in nature and can be transferred and amplified between systems through specific molecular interactions and multi-scale couplings. However, the mechanisms of chiral formation and the critical steps during the growth process ...