基于人类和小鼠共享电生理信息的神经元细胞类型分类

神经元分类的创新融合:基于人类和小鼠电生理数据的共同信息 科学界长期以来对神经元分类面临巨大挑战。准确分类神经元对于理解大脑在健康和疾病状态下的功能至关重要。这篇由Bar-Ilan University的Ofek Ophir、Orit Shefi与Ofir Lindenbaum引领的研究在《Neuroinformatics》期刊上发表,提出了一种全新的机器学习框架,通过联合使用来自人类和小鼠的电生理数据来对神经元进行分类。 研究背景 神经元是神经系统的基本单元,其分类自Ramon y Cajal在1995年发表《人和脊椎动物神经系统的组织学》以来,一直是神经科学的核心问题。分类神经元有助于在不同实验室和实验条件下的一致识别,这对于理解大脑功能及其在健康和病态状态下的变化至关重要。 研究来源 ...

解决 MRI 协议不合规问题的开源工具 MRQA

MRQA:解决 MRI 协议不合规的广泛问题 背景介绍 近年来,大规模神经影像数据集在研究脑-行为关系中发挥了至关重要的作用,例如阿尔茨海默病神经成像计划(ADNI),人类连接组计划(HCP),少年大脑认知发展(ABCD)研究等。这些数据集通常由多个站点和不同的扫描仪型号采集。然而,跨站点或跨设备的数据收集存在一个重要问题,即成像参数的一致性不足。成像参数的不一致会严重影响数据质量,降低信噪比(SNR)和统计功效,甚至可能使研究结果无效。 传统上,确保MRI扫描协议一致性是一项繁复且手动的任务。这主要是由于DICOM(数字成像和通讯标准)的复杂性和缺乏资源来专门处理这一问题。另外,由于不同站点场所的参数值经常被即兴调整,协议不合规问题通常被忽视。因此,在多个站点进行数据汇总时,一致的成像协议...

基于贝叶斯张量建模的阿尔茨海默病影像分类

基于贝叶斯张量建模的阿尔茨海默病影像分类 引言 神经影像学研究是当代神经科学的重要组成部分,极大地丰富了我们对大脑结构和功能的认识。通过这些非侵入性的视觉化技术,研究人员可以更精确地预测某些神经和精神疾病的风险,进而在早期阶段进行干预和治疗,从而改善患者的健康和生活质量。特别是在阿尔茨海默病(Alzheimer’s Disease,以下简称AD)的研究中,神经影像学提供了宝贵的病理机制见解,能跟踪病情进展,识别早期症状并区分其他导致痴呆的原因。 然而,在处理神经影像数据时会面临多个重大挑战,例如数据空间依赖性、高维度及噪声,并且往往难以在异构条件下识别合适的神经生物标志物。为了应对这些复杂的影像数据问题,研究者提出了多种统计和机器学习方法,其中包括基于影像特征的分类模型。 尽管现有的方法有着...

使用PED算法识别自闭症谱系障碍的诊断生物标志物

使用PED算法识别自闭症谱系障碍的诊断生物标志物

通过PED算法识别自闭症谱系障碍的诊断生物标志物 在神经信息学领域,自闭症谱系障碍(ASD)的研究多集中于脑部区域之间的双向连接关系,而较少涉及脑部区域的高阶相互作用异常。为了探讨脑区的复杂关系,作者团队采用了部分熵分解(Partial Entropy Decomposition, PED)算法,通过计算三脑区(triads)的高阶相互依赖性来捕捉高阶相互作用。本文提出了一种基于PED和替代检验方法的方法,检验单个脑区对三重脑区的影响,发现了关键的三脑区。进一步采用超图模块优化算法揭示了高阶脑结构,在ASD中,右丘脑与左丘脑的连接相比于典型对照(TC)更松散。关键的冗余三脑区(左小脑、左楔前叶和右下枕回)的相互作用表现出显著的衰减,而协同的关键三脑区(右小脑、左中央后回和左舌回)的相互作用明...

数据管理教学:基于DataLad的多年多领域努力

科学研究数据管理教育的多年的多领域努力 研究背景 随着现代神经科学的发展,研究数据管理(Research Data Management, RDM)已经成为科学家们不可或缺的技能。然而,尽管研究数据管理对于科学研究具有重要性,这类技术技能往往在领域特化的研究生教育中被忽视。因此,越来越多的社区努力提供有组织的培训机会和自学材料,以帮助早期科研人员获得这方面的知识和技能。 Massachusetts Institute of Technology(MIT)的“the missing semester of your cs education”正是这种教育缺失的一个例证。此外,现代计算机和应用程序的高可用性极大地降低了用户对计算机的熟悉程度,这使得许多科学家缺乏有效管理研究数据和结果所需的基本技...

肿瘤大小不是一切:推动影像组学作为肿瘤学药物开发和临床护理的精准医学标志物

在当今的肿瘤学临床实践和药物开发领域,对肿瘤反应的评估方法正处于革新的边缘。自1981年世界卫生组织(WHO)提出用于评估抗癌药物效果的肿瘤反应分类标准以来,这一领域经历了多次改进。最为人们熟知的,是1995年成立的响应评估标准在实体瘤(RECIST)工作组。该工作组通过与加拿大国家癌症研究所、美国国家癌症研究所以及欧洲癌症研究和治疗组织的合作,建立了基于大量病例数据的循证推荐,推动了RECIST 1.0和1.1版本的发布,这些版本在确定客观响应率等影像学终点方面发挥了重要作用。 然而,随着对肿瘤生物学更深入的理解和诊疗策略的不断演进,传统的依赖大小和数量变化的评估方法显示出其局限性,这就需要新的方法来填补这一空缺。为此,RECIST工作组于2022年5月组织了一次多学科工作坊,聚焦于探讨放...