数据工程赋能的胶质瘤生存分析

脑胶质瘤患者的生存分析研究:数据工程赋能综述 引言 脑胶质瘤是一种在胶质细胞中发生的肿瘤,它们占全部原发性脑和中央神经系统肿瘤的26.7%。由于肿瘤异质性的存在,脑胶质瘤患者的生存分析成为了临床管理中的一个关键任务。在过去几十年里,研究者们提出了多种生存分析方法,结合不同类型的数据,如影像和遗传信息。尤其是近年来,机器学习技术和深度学习的兴起改变了传统的基于统计分析的生存分析方法。本文综述了利用诊断影像技术和基因组平台获得的预后参数,以及用于预后预测的技术、学习和统计分析算法,突出了现有生存预测研究的挑战,并提出了该领域研究的未来方向。 作者及出版信息 作者: Navodini Wijethilake (斯里兰卡莫拉图瓦大学计算机科学与工程系研究成员) 合著者: Dulani Meedeni...

基于影像表型和基因型的深度学习来预测胶质母细胞瘤患者的总体生存时间

基于影像表型和基因型的深度学习来预测胶质母细胞瘤患者的总体生存时间

在全球范围内,恶性脑肿瘤中最常见和最致命的是胶质母细胞瘤(Glioblastoma, GBM)。近年来,不断有研究尝试通过机器学习技术,基于术前的单模态或多模态成像表型来预测GBM患者的总生存时间(Overall Survival, OS)。尽管这些机器学习方法在预测上取得了一定的进展,但多数研究并未考虑基于影像学的OS预测方法中包含的肿瘤基因型信息,而这些信息对预后有很强的指示作用。为解决这般问题,Tang Zhenyu、Xu Yuyun、Jin Lei 等人于2020年6月在《IEEE Transactions on Medical Imaging》上发表了题为“Deep Learning of Imaging Phenotype and Genotype for Predicting ...

St. Jude Survivorship Portal:分享和分析大规模临床和基因组数据集

St. Jude Survivorship Portal:分享和分析大规模临床和基因组数据集

St. Jude Survivorship Portal: 分析及共享儿童癌症幸存者的大规模临床和基因组数据 研究背景 在美国,儿童癌症的五年生存率已从20世纪70年代的约60%上升到今天的超过85%。尽管生存率显著提高,但这些儿童癌症幸存者却面临着由于癌症及其治疗而导致的各种不良健康结果的风险。这些不良结果包括过早死亡、器官功能障碍、新生肿瘤、不良的社会经济结果、心理社会挑战以及总体生活质量的下降等。为了应对这些问题,主要的研究工作集中在确定其潜在原因、相关风险以及最易感的患者亚群。 与此有关的大规模纵向研究如St. Jude Lifetime Cohort (SJLife)和Childhood Cancer Survivor Study (CCSS)已生成了大量关于幸存者的综合数据,涵盖...

通过计算饱和诱变法鉴定克隆性造血驱动突变

引言 在健康的造血过程中,一组造血干细胞(Hematopoietic Stem Cells,简称HSC)贡献了所有与血液相关的谱系。然而,随着年龄的增长,这一过程常常会导致克隆性造血(Clonal Hematopoiesis,简称CH)的发生,即由某个HSC源头的克隆扩展,占据了很大一部分的血细胞和血小板。这个克隆扩展现象由HSC在生命过程中获得的躯体突变驱动,并在老年人群中高度普遍。与CH相关的基因突变赋予HSC生长优势,使其在造血过程中受到正选择(1-13)。近年来,大量研究表明,CH与血液恶性肿瘤发展、心血管疾病、全因死亡率以及实体肿瘤和传染病的风险增加相关(2, 7, 14-20)。尽管最近的深入研究已确认了大约60个CH驱动基因(1, 12, 13, 21),但我们对这些基因中的哪...

brainlife.io: 一个支持神经科学研究的去中心化开源云平台

学术报告: brainlife.io: 支持神经科学研究的去中心化和开源云平台 背景与动机 神经科学研究正在快速发展,数据标准化、管理与处理工具的提升使得研究变得更加严谨和透明。然而,这也带来了复杂的数据流水线,实现”FAIR”原则(Findable, Accessible, Interoperable, Reusable,译为”可查找、可访问、可互操作和可重复使用”)的过程增加了潜在的障碍。传统上,一些有关神经影像学的研究可以在单一实验室内完成,但如今的研究往往需要数百个小时的数据测量,跨越多个参与者、实验室和数据模型。 数据背景 本文中所描述的brainlife.io平台旨在通过支持数据标准化、管理、可视化和处理,来简化和民主化神经影像学研究。这个平台自动追踪数千个数据对象的起源历史,使...

预测错误处理和信息预期的锐化在面孔感知中的作用

预测错误处理和信息预期的锐化在面孔感知中的作用

科学报告 背景介绍 感知和神经处理感官信息极大程度上受先验期望的影响。感知不仅仅是被动的接收,而是通过将现有的感官信息与基于过去经验和当前情境获得的先验信息结合而成的一种主动推理过程。这种信息的结合方式可以通过不同的机制表现出来:一种是专注于异常输入,即预测误差信号处理(Prediction Error,简称PE);另一种是通过对预期信息的增强实现的锐化表示。本文研究了这两种机制在面孔感知中的表现。 研究来源 本研究由德国汉堡大学医疗中心(University Medical Center Hamburg-Eppendorf)系统神经科学系的Annika Garlichs和Helen Blank进行,论文发表于2024年4月的《Nature Communications》期刊。 研究流程及方...