Influence of Crystal Shape and Orientation on the Magnetic Microstructure of Bullet-Shaped Magnetosomes Synthesized by Magnetotactic Bacteria

Magnetotactic Bacteria (MTB) are a group of microorganisms capable of biomineralizing magnetosomes. Magnetosomes are membrane-bound magnetic nanocrystals primarily composed of magnetite (Fe₃O₄) or greigite (Fe₃S₄). These magnetosomes are arranged in chains or specific orientations within bacterial cells, endowing the bacteria with a magnetic dipole...

Magnetite Nanoparticles as Metastable Biogeobatteries in Consecutive Redox Cycles

Iron (Fe) is one of the most abundant elements on Earth, widely present in soils and sediments, and participates in global carbon, nitrogen, and oxygen cycles. The redox reactions of iron play a crucial role in biogeochemical cycles, particularly in the processes of iron oxidation and reduction. Iron minerals, especially mixed-valent iron minerals ...

Microbial Reduction of Fe(III)-Bearing Solids Recovered from Hydraulic Fracturing Flowback Water: Implications for Wastewater Treatment

Hydraulic fracturing is a technique used to extract natural gas from unconventional reservoirs, but it generates large volumes of flowback and produced water. These waters contain complex mixtures of organic and inorganic constituents, particularly the solids associated with these fluids, which are often rich in iron (Fe), toxic organics, heavy met...

Bacterial Toxicity of Sulfidated Nanoscale Zerovalent Iron in Aerobic and Anaerobic Systems: Implications for Chlorinated Solvent Clean-Up Strategies

Academic Background The widespread use and improper disposal of chlorinated solvents (such as perchloroethylene and trichloroethylene) have led to severe contamination of soil and groundwater worldwide. These pollutants not only threaten groundwater security but may also affect human health through the food chain. Although traditional microbial red...

SP-DTI: Subpocket-Informed Transformer for Drug–Target Interaction Prediction

Academic Background Drug-Target Interaction (DTI) prediction is a critical step in drug discovery, significantly reducing the cost and time of experimental screening. However, despite the advancements in deep learning that have improved the accuracy of DTI prediction, existing methods still face two major challenges: lack of generalizability and ne...

Ultra-High Filling Ratio of Non-Percolative Rapeseed-Shaped Liquid Metal Fiber Mats for Pressure Sensors via Electrospinning Aided Inhomogeneous Dispersion

Background Introduction Flexible capacitive pressure sensors have broad application prospects in intelligent robotics, medical monitoring, and human-machine interaction due to their high sensitivity, fast response, and excellent mechanical flexibility. However, traditional dielectric elastomers typically have low dielectric constants, limiting the ...

Flexible, Visual, and Multifunctional Humidity-Strain Sensors Based on Ultra-Stable Perovskite Luminescent Filaments

Academic Background With the rapid development of the Internet of Things and wearable electronics, the demand for smart sensors in fields such as physiological monitoring, smart clothing, and human-computer interaction has been increasing. In particular, flexible multifunctional sensors have attracted significant attention due to their potential ap...

Nanofiber-Based Composite Solid Electrolytes for Solid-State Batteries: From Fundamentals to Applications

Academic Background With the rapid development of portable electronic devices and electric vehicles, the demand for high-performance energy storage technologies is growing. Lithium-ion batteries (LIBs), as the mainstream energy storage technology, still face challenges in terms of energy density and safety. In particular, the growth of lithium dend...

All-Polymer Aqueous Fiber Battery for Sustainable Electronics

Academic Background With the rapid development of wearable electronic devices (such as health monitoring devices and human-computer interaction devices), the demand for flexible, safe, and sustainable power solutions is becoming increasingly urgent. Although traditional lithium-ion batteries are widely used, their rigid structure, safety risks, env...

Bio-Inspired Tough Metafiber with Hierarchical Photonic Structures for Durable Passive Radiative Thermal Management

Academic Background With the intensification of global climate change, energy consumption in buildings, particularly from air conditioning systems, continues to rise. Statistics show that building air conditioning systems account for approximately 10% of global annual electricity consumption, a figure that is increasing alongside carbon emissions, ...