EHR-HGCN : Une Approche Hybride Améliorée pour la Classification de Texte Utilisant des Réseaux de Convolution de Graphes Hétérogènes dans les Dossiers de Santé Électroniques

EHR-HGCN : Une Approche Hybride Améliorée pour la Classification de Texte Utilisant des Réseaux de Convolution de Graphes Hétérogènes dans les Dossiers de Santé Électroniques

EHR-HGCN : une nouvelle méthode hybride de réseau de convolution de graphes hétérogènes pour la classification de textes de dossiers de santé électroniques Introduction au contexte académique Avec le développement rapide du traitement du langage naturel (NLP), la classification de texte est devenue une direction de recherche importante dans ce doma...

Extraction de Relations Biomédicales avec des Recommandations Basées sur des Graphes de Connaissance

Rapport de recherche sur la combinaison de l’extraction des relations médicales et des systèmes de recommandation basés sur les graphes de connaissances Introduction Dans le domaine médical, la croissance exponentielle de la littérature rend difficile pour les chercheurs de suivre en temps opportun les derniers développements dans leurs domaines re...

Réseau de Graphes Hétérogènes à Double Niveau d'Interaction pour la Recommandation de Paquets Médicamentaux

Recherche sur le Système de Recommandation de Paquets Médicaux : Réseau de Neurones Graphiques Hétérogènes Basé sur une Conscience d’Interaction Bi-niveau Avec la large adoption des dossiers de santé électroniques (electronic health records, EHRs) dans le domaine médical, extraire des connaissances médicales potentielles et précieuses pour soutenir...

Prédire l'affinité médicament-cible en apprenant des connaissances sur les protéines à partir de réseaux biologiques

Prédiction de l’affinité médicament-cible basée sur l’apprentissage des connaissances des protéines via des réseaux biologiques Introduction La prédiction de l’affinité médicament-cible (drug-target affinity, DTA) joue un rôle crucial dans le processus de découverte de médicaments. Une prédiction du DTA efficace et précise peut significativement ré...

Un modèle de raisonnement cognitif explicable et personnalisé basé sur un graphe de connaissances: Vers la prise de décision pour la pratique générale

Un modèle de raisonnement cognitif explicable et personnalisé basé sur un graphe de connaissances: Vers la prise de décision pour la pratique générale

Modèle de raisonnement cognitif explicable et personnalisé basé sur un graphe de connaissances pour la prise de décision en médecine générale Introduction La médecine générale, en tant que composante importante des soins médicaux communautaires et familiaux, couvre différents âges, sexes, systèmes d’organes et divers types de maladies. Son principa...

Transformateur de Sujet Graphique Amélioré par la Connaissance pour la Résumé de Texte Biomédical Explicable

Application de Transformer Thématique Renforcé par la Connaissance dans le Résumé Explicable de Textes Biomédicaux Contexte de la Recherche Avec l’augmentation continue du volume de publications biomédicales, la tâche de résumé automatique des textes biomédicaux devient de plus en plus importante. En 2021, rien que dans la base de données PubMed, 1...