Réseaux de Convolution de Graphes Spatio-Temporels Multi-Vue avec Généralisation de Domaine pour la Classification des États de Sommeil

Le classement des phases de sommeil est essentiel pour évaluer la qualité du sommeil et diagnostiquer les maladies. Cependant, les méthodes actuelles de classification rencontrent encore de nombreux défis lorsqu’il s’agit de traiter les caractéristiques spatiales et temporelles des signaux cérébraux multicanaux qui changent avec le temps, de gérer ...

Apprentissage profond informé par la physique pour la modélisation musculo-squelettique: Prédire les forces musculaires et la cinématique des articulations à partir de l'EMG de surface

Les modèles musculosquelettiques ont été largement utilisés pour les analyses biomécaniques car ils peuvent estimer des variables de mouvement difficiles à mesurer directement in vivo (comme les forces musculaires et les moments articulaires). Les modèles musculosquelettiques entraînés de manière traditionnelle par des processus physiques peuvent e...

Modèle d'évaluation basé sur l'apprentissage profond pour l'identification en temps réel des apprenants visuels utilisant l'EEG brut

Dans l’environnement éducatif actuel, comprendre le style d’apprentissage des étudiants est crucial pour améliorer leur efficacité d’apprentissage. En particulier, l’identification des styles d’apprentissage visuels (visual learning style) aide les enseignants et les étudiants à adopter des stratégies plus efficaces dans le processus d’enseignement...

Une approche basée sur le Transformer combinant un réseau d'apprentissage profond et des informations spatio-temporelles pour la classification des EEG bruts

Contexte et Objectif de la Recherche Ces dernières années, les systèmes d’Interface Cerveau-Ordinateur (Brain-Computer Interface, BCI) ont été largement utilisés dans les domaines de l’ingénierie neuronale et des neurosciences, et l’électroencéphalogramme (EEG), en tant qu’outil pour refléter l’activité de différents groupes de neurones du système ...

Coefficient de corrélation temporelle-spectrale d'attention basé sur les ondelettes pour la classification EEG d'imagination motrice

Interface Cerveau-Machine (Brain-Computer Interface, BCI) : Développements et Applications en Imagerie Motrice EEG L’interface cerveau-machine (Brain-Computer Interface, BCI) a progressé rapidement ces dernières années et est considérée comme une technologie de pointe permettant de contrôler des dispositifs externes directement par le cerveau, sans...

Hiérarchies Spatio-temporelles du Cerveau pour la Reconnaissance de la Mémoire Auditive et le Codage Prédictif

Hiérarchies Spatio-temporelles du Cerveau pour la Reconnaissance de la Mémoire Auditive et le Codage Prédictif

Hiérarchie spatio-temporelle du cerveau dans la reconnaissance de la mémoire auditive et le codage prédictif Introduction Cette étude vise à explorer les mécanismes hiérarchiques du cerveau humain lorsque celui-ci reconnaît des séquences musicales mémorisées antérieurement et leurs modifications systématiques. Bien que le traitement neural des modè...