不同认知工作负荷下大脑激活重组的研究:基于ERD/ERS和相干性分析

不同大脑激活重排在认知负荷期间的研究:ERD/ERS与相干性分析 学术背景 人类大脑在进行想象、运动或认知任务时,其功能活动模式及其激活区域均有不同。这些模式变化也反映在大脑电活动的变化中,通过脑电图(EEG)可以从大脑头皮上测量这些变化。认知任务会导致EEG信号模式的相对变化,即事件相关去同步化/同步化(ERD/ERS)。本研究旨在探讨人脑在执行心算任务时的激活模式,特别是通过计算EEG信号的频带功率谱密度(PSD)和相干性分析来揭示这些模式。 研究来源 本文由Md. Rayahan Sarker Bipul、Md. Asadur Rahman和Md. Foisal Hossain撰写,分别来自Khulna University of Engineering and Technology(...

用于情感计算的生理数据:Affect-HRI 数据集

生理数据在与拟人化服务机器人进行人机交互中的应用:Affect-HRI数据集 背景与研究意义 在人类与人类、人类与机器人互动中,交互对象会影响人类的情感状态。与人类不同,机器人本质上无法表现出同理心,因此无法缓解不利的情感反应。为了创建一个负责任且具有同理心的人机交互系统,尤其是在涉及拟人化服务机器人时,必须了解机器人行为对人类情感的影响。为此,研究人员提供了一个新的综合数据集Affect-HRI,首次包括了标记有人类情感(即情绪和心情)的生理数据,这些数据是在进行的一项人机交互研究中收集的。 研究来源 该研究论文由Judith S. Heinisch、Jérôme Kirchhoff、Philip Busch、Janine Wendt、Oskar von Stryk和Klaus David...

创建互补综合网络用于快速筛选适用于新发疾病爆发的可用药物

新型药物重新定位方法的网络构建与应用研究 背景 在COVID-19大流行期间,研究人员和制药公司致力于开发治疗和疫苗。药物重新定位由于捷径被认为是快速有效的应对策略。药物重新定位试图发现已批准药物的新用途,被认为比传统药物发现路径更廉价且更迅速[1–3]。例如,瑞德西韦和地塞米松就是两种成功的重新定位药物[4–6]。虽然全球疫情逐渐转向地方性阶段,病毒传播仍在继续。快速发现候选药物并提供给医学或制药领域的专家进行研究的重要性已被COVID-19大流行深刻地提醒了我们[7]。 随着生物学机制的进步和生物医学知识的收集,更准确和精确的基于计算的药物重新定位成为可能。网络药物学(network medicine)通过观察生物实体(如药物、基因和疾病)之间的复杂关系,提供候选药物[8–11]。但在新...

通过亲和图增强分类器进行哮喘预测:基于常规血液生物标志物的机器学习方法

哮喘预测通过关联图增强分类器:基于常规血液生物标志物的机器学习方法 背景介绍 哮喘是一种影响全球约2.35亿人的慢性呼吸系统疾病。据世界卫生组织(World Health Organization, WHO)统计,哮喘病的主要特点是气道炎症,导致哮喘患者出现喘息、呼吸急促和胸闷等症状。为了有效管理和治疗哮喘,及时准确的诊断至关重要。然而,传统的哮喘诊断方法往往结合病史、体格检查和肺功能测试,不仅昂贵,还由于某些患者的非典型症状,使得诊断时间延长或误诊。此外,儿童哮喘的诊断尤为困难,传统方法的耗时特性可能会加重这一问题。 随着机器学习(Machine Learning, ML)的发展,在分析医疗数据、识别模式和生成预测方面展现了巨大潜力。本研究旨在利用关联图增强分类器(Affinity Gra...

基于多功能连接图卷积网络的自闭症谱系障碍识别

自闭症谱系障碍(ASD)是一种以重复行为、狭窄的兴趣和严重的社交互动缺陷为特征的异质性疾病,意即在不同个体中表现差异较大。中国学龄前儿童自闭症的患病率约为1%。目前,自闭症的诊断依赖于诊断量表和医生询问,这种主观性强的评估方式极大地影响了诊断结果,给医疗、社会和教育护理带来了重大挑战。本文通过结合图卷积网络(Graph Convolutional Networks,GCN)与静态功能磁共振成像(rs-fMRI)数据,提出一种多功能连接基图卷积网络(mfc-GCN)框架,以实现对自闭症谱系障碍(Autism Spectrum Disorder,ASD)的早期诊断。本文由Chaoran Ma、Wenjie Li、Sheng Ke、Jidong Lv、Tiantong Zhou和Ling Zou共...

基于图神经网络的肺癌表示学习

基于图神经网络的肺癌表示学习

基于图神经网络的肺癌表示学习 背景介绍 随着数字病理学的快速发展,基于图像的诊断系统在精确病理诊断中变得越来越重要。这些系统依赖于用于全切片图像(Whole Slide Images, WSIs)上的多实例学习(Multiple Instance Learning, MIL)技术。然而,如何有效表示WSIs仍然是一个亟需解决的问题。深度神经网络的出现使得视觉计算取得了突破性进展,但面对每个WSI中庞大的像素量,现有的神经网络方法仍面临巨大挑战。近年来,一些研究已经探索了基于图的模型,以期在嵌入和表示WSIs的过程中捕捉图像中的复杂关系。 文章来源 本文的研究由以下作者完成:Rukhma Aftab, Yan Qiang, Juanjuan Zhao, Zia Urrehman和Zijuan ...