The Design of Ternary Nanofibers with Core–Shell Structure for Electromagnetic Stealthy Antenna

The Design of Ternary Nanofibers with Core–Shell Structure for Electromagnetic Stealthy Antenna

Academic Background In the information age, the widespread application of electromagnetic waves (EMW) has led to breakthroughs in various fields such as communication, healthcare, and navigation. However, with the proliferation of electronic devices, electromagnetic interference (EMI) issues have become increasingly severe, not only affecting the n...

Super-Elastic Phenylalanine Dipeptide Crystal Fibers Enable Monolithic Stretchable Piezoelectrics for Wearable and Implantable Bioelectronics

Super-Elastic Phenylalanine Dipeptide Crystal Fibers in Wearable and Implantable Bioelectronics Background With the rapid development of flexible bioelectronics, the development of piezoelectric materials and devices with high elasticity, breathability, and the ability to achieve conformal deformation with the human body has become an important res...

A Polyphenol–Metal Network of Propyl Gallate Gallium/Hafnium Oxide on Polyimide Fibers for Facilitating Ligament–Bone Healing

Study on Surface Modification of Polyimide Fibers to Promote Ligament-Bone Healing Academic Background Anterior Cruciate Ligament (ACL) injury is one of the most common sports injuries worldwide, with approximately 1 in 1,250 people requiring ACL reconstruction surgery each year. Currently, the main methods for ACL reconstruction include autografts...

Novel Endocytosis Inhibitors Block Entry of HIV-1 Tat into Neural Cells

Novel Endocytosis Inhibitors Block HIV-1 Tat Protein Entry into Neural Cells Academic Background HIV-1 (human immunodeficiency virus type 1) infection not only leads to immune system exhaustion but is also closely associated with HIV-associated neurocognitive disorders (HAND). Although combined antiretroviral therapy (cART) has significantly improv...

A Spatial-Frequency Patching Metasurface Enabling Super-Capacity Perfect Vector Vortex Beams

The Realization of Super-Capacity Perfect Vector Vortex Beams Research Background and Problem Statement Optical vortices, with their unique orbital angular momentum (OAM) characteristics, have demonstrated great potential in applications such as optical multiplexing, particle manipulation, imaging, holographic display, optical communication, and op...