Réseaux de Convolution de Graphes Spatio-Temporels Multi-Vue avec Généralisation de Domaine pour la Classification des États de Sommeil

Le classement des phases de sommeil est essentiel pour évaluer la qualité du sommeil et diagnostiquer les maladies. Cependant, les méthodes actuelles de classification rencontrent encore de nombreux défis lorsqu’il s’agit de traiter les caractéristiques spatiales et temporelles des signaux cérébraux multicanaux qui changent avec le temps, de gérer ...

Classification EEG inter-sujets basé sur l'apprentissage ensembliste hétérogène multi-tâches chez les patients victimes d'AVC

Classification EEG inter-sujets basé sur l'apprentissage ensembliste hétérogène multi-tâches chez les patients victimes d'AVC

Introduction L’imagerie motrice (Motor Imagery, MI) fait référence à l’exécution d’une activité par l’imagination sans mouvement musculaire réel. Ce paradigme est largement utilisé dans les interfaces cerveau-machine (Brain-Computer Interface, BCI) pour décoder l’activité cérébrale en commandes de contrôle pour des dispositifs externes. En particul...

Apprentissage profond informé par la physique pour la modélisation musculo-squelettique: Prédire les forces musculaires et la cinématique des articulations à partir de l'EMG de surface

Les modèles musculosquelettiques ont été largement utilisés pour les analyses biomécaniques car ils peuvent estimer des variables de mouvement difficiles à mesurer directement in vivo (comme les forces musculaires et les moments articulaires). Les modèles musculosquelettiques entraînés de manière traditionnelle par des processus physiques peuvent e...

Réseau Neuronal Convolutionnel d'Attention Multi-Caractéristiques pour le Décodage de l'Imagination Motrice

Le Brain-Computer Interface (BCI) est un moyen de communication reliant le système nerveux à l’environnement extérieur. La Motor Imagery (MI) est la fondation de la recherche BCI, elle se réfère à la répétition interne avant l’exécution du mouvement. Les technologies non invasives, telles que l’électroencéphalographie (EEG), permettent d’enregistre...

Une approche d'apprentissage profond basée sur l'attention pour la classification des stades du sommeil avec EEG monocanal

L’électronique IEEE (Institut des ingénieurs électriques et électroniques) a publié dans le volume 29 de “Transactions on Neural Systems and Rehabilitation Engineering” de 2021 un article intitulé “A Single-Channel EEG Sleep Stage Classification Method Based on Attention Deep Learning”. Cet article a été rédigé par les chercheurs Emadeldeen Edele, ...