Inter-alpha-trypsin inhibitor heavy chain h3 is a potential biomarker for disease activity in myasthenia gravis

Research Background Myasthenia Gravis (MG) is a chronic antibody-mediated autoimmune disease that primarily affects synaptic transmission at the neuromuscular junction. Approximately 85% of MG patients are antibody-mediated targeting acetylcholine receptors (AChR). The clinical features of this disease include muscle weakness, especially fatigue-in...

Classifying Neuronal Cell Types Based on Shared Electrophysiological Information from Humans and Mice

Innovative Fusion in Neuron Classification: Shared Information from Human and Mouse Electrophysiological Data The scientific community has long faced significant challenges in neuron classification. Accurate classification of neurons is crucial for understanding brain function in both healthy and diseased states. This study, led by Ofek Ophir, Orit...

Introduction to Cadence: A Neuroinformatics Tool for Supervised Calcium Events Detection

A New Breakthrough in Neuroinformatics: Research Report on Cadence Tool for Calcium Event Detection Background Introduction Calcium imaging technology has revolutionized the study of neuron ensembles, providing researchers with a powerful tool to simultaneously visualize and monitor multiple neuronal activities. Calcium imaging utilizes fluorescent...

Predicting cognitive functioning for patients with a high-grade glioma: Evaluating different representations of tumor location in a common space

Academic Background It is widely recognized that the cognitive function of patients with high-grade glioma is affected by the location and volume of the tumor. However, research on how to accurately predict individual patients’ cognitive function for personalized treatment decisions before and after surgery remains limited. Currently, most studies ...

Solving the Pervasive Problem of Protocol Non-Compliance in MRI Using an Open-Source Tool MRQA

MRQA: Addressing the Widespread Problem of MRI Protocol Non-Compliance Background In recent years, large-scale neuroimaging datasets have played a crucial role in studying brain-behavior relationships, such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI), Human Connectome Project (HCP), and Adolescent Brain Cognitive Development (ABCD) st...

Bayesian Tensor Modeling for Image-Based Classification of Alzheimer's Disease

Image Classification Based on Bayesian Tensor Modeling for Alzheimer’s Disease Introduction Neuroimaging research is a crucial component of contemporary neuroscience, significantly enhancing our understanding of brain structure and function. Through these non-invasive visualization techniques, researchers can more accurately predict the risk of cer...