Une Puce Photonique Topologique Programmable

Une Puce Photonique Topologique Programmable

Progrès dans la recherche sur les puces photoniques topologiques programmables Contexte de la recherche Ces dernières années, les isolants topologiques (Topological Insulators, TI) ont suscité un intérêt considérable dans la communauté de la physique. Leurs mécanismes physiques riches et les applications potentielles des modes de bord topologiques ...

Suivi optimal avancé intégrant une technique de critique neuronale pour les jeux à somme nulle à contraintes asymétriques

Rapport académique : Contrôle de suivi optimal avancé intégrant une technique de critique neuronale pour les jeux à somme nulle contraints asymétriques Contexte et problématique de recherche Dans le domaine moderne du contrôle, la théorie des jeux est un modèle mathématique qui étudie la concurrence et la coopération entre des décideurs intelligent...

Une méthode de protection invisible et robuste pour le contenu généré par DNN

Méthode robuste et invisible de protection du contenu généré par des réseaux neuronaux profonds Contexte académique Ces dernières années, avec le développement révolutionnaire et l’application large des modèles d’apprentissage profond dans les applications d’ingénierie, des applications phares telles que ChatGPT et DALL⋅E 2 ont émergé, ayant un imp...

m𝟐ixkg : Mélange pour des exemples négatifs plus difficiles dans le graphe de connaissances

Rapport académique Introduction Le graphe de connaissances (knowledge graph, KG) est une forme de données structurées qui enregistre des informations sur les entités et les relations, largement utilisé dans des domaines tels que les systèmes de question-réponse, la recherche d’information et la lecture automatique. La technique d’intégration de gra...

Explorer la relation adaptative entre les échantillons dans la distillation des connaissances sans données

Ces dernières années, les scénarios d’application tels que la protection de la vie privée et la transmission massive de données ont posé des défis sévères à l’inaccessibilité des données. En réponse, les chercheurs ont proposé la méthode dite de distillation des connaissances sans données (Data-Free Knowledge Distillation, DFKD) pour résoudre ces p...

Modélisation de l'erreur de Bellman avec la distribution logistique et ses applications en apprentissage par renforcement

Contexte et objectifs de l’étude L’apprentissage par renforcement (Reinforcement Learning, RL) est devenu ces dernières années un domaine dynamique et transformationnel de l’intelligence artificielle, avec pour objectif de maximiser la récompense cumulative grâce à l’interaction entre un agent et son environnement. Cependant, l’application du RL da...