综合外周血免疫谱分析揭示患癌患者的五种免疫治疗反应类型

关于癌症患者外周血免疫特征分析的研究报告 癌症是全球范围内重大且广泛存在的健康问题,尽管近年来在癌症治疗方面取得了显著进展,但依然有许多挑战亟待解决,包括如何准确预测患者对不同治疗的反应。免疫治疗,尤其是免疫检查点抑制剂(免疫检查点blockade,ICB)在过去十年中取得了显著进展,但大多数患者的反应率仍然难以预测,并且常常出现严重的免疫相关副作用。因此,全面诊断和一致性分析模型以评估患者免疫系统的状态,以监测治疗反应和预测是迫切需要的。 本文源头 这篇题为《comprehensive peripheral blood immunoprofiling reveals five immunotypes with immunotherapy response characteristics i...

运动功能障碍的量化和诊断

背景与研究动机 帕金森病(Parkinson’s Disease, PD)是一种神经退行性疾病,主要影响患者的运动能力,导致震颤、运动迟缓、四肢僵硬和行走平衡问题。这种运动缺陷严重影响患者的独立生活能力和生活质量。据统计,预计到2030年,仅在美国就会有近1.2百万人患有帕金森病,而全球的患者数更是超过1000万人。因此,如何准确评估和诊断患者的运动缺陷是一个急需解决的关键问题。 现有的PD严重性评估方法主要依赖于临床医生的主观观察和经验,通过患者在实验室或诊所中进行特定动作来评估。这种方法不仅受到人为主观因素的影响,且在受控环境中的观察无法充分反映患者在日常生活中的实际运动情况。因此,研究人员亟需一种可靠的、非侵入式的量化方法,能客观地评估帕金森病患者的运动缺陷,从而提供更及时有效的康复反...

StrokeClassifier:使用电子健康记录的集合共识模型进行缺血性脑卒中病因分类

StrokeClassifier:人工智能工具基于电子健康记录对缺血性卒中进行病因分类 项目背景及研究动机 脑卒中(尤其是急性缺血性卒中,AIS)的病因识别工作对二次预防至关重要,但诊断起来往往非常困难。在美国,每年的缺血性卒中新发病例近67.6万,其中四分之一的患者曾有过卒中史。这种病症的再发率较高,甚至可能导致死亡或进一步的残疾。缺血性卒中的病因可以多种多样,包括大动脉粥样硬化、心源栓塞、小血管病以及其他罕见病因。然而,美国大约20-30%的缺血性卒中患者在经过评估后,病因依然无法确定,被归类为隐源性卒中。这部分患者的再发卒中风险特别高。因此,能够准确识别隐源性卒中的病因,对于优化治疗方案、提高患者预后具有重要意义。然而,做出准确诊断需要整合大量的数据,包括临床史、体检结果、实验室数据、...

通过级联扩散模型从RNA测序数据生成肿瘤的合成全切片图像

通过级联扩散模型从RNA测序数据生成肿瘤的合成全切片图像

基于级联扩散模型从RNA测序数据生成肿瘤的合成全切片图像 近期发表在Nature Biomedical Engineering上的一篇题为”Generation of Synthetic Whole-Slide Image Tiles of Tumours from RNA-Sequencing Data via Cascaded Diffusion Models”的研究,引起了广泛关注。这项研究由来自斯坦福大学、根特大学、阿贡国家实验室等多家机构的学者共同完成,旨在解决癌症数据不足的问题,从而提升机器学习模型在癌症检测中的表现。本文的作者包括Francisco Carrillo-Perez, Marija Pizurica, Yuanning Zheng, Tarak Nath Nandi...

建模分析经济决策领域中依靠机器学习建立理论所使用数据集的偏倚

背景介绍 长期以来,规范性(nomative)和描述性(descriptive)模型一直在试图解释和预测人类在面对商品或赌博等风险选择时的决策行为。最近的一项研究通过训练神经网络(Neural Networks, NNs)在一个新的大规模在线数据集choices13k上,发现了一种更准确的人类决策模型。本研究系统地分析了不同模型和数据集之间的关系,并发现了数据集偏差(dataset bias)的证据。研究表明,数据集choices13k中对随机赌博选择的偏好趋向于平衡,可能反映了增加的决策噪声。通过将结构化的决策噪声添加到使用实验室研究数据训练的神经网络中,我们构建了一个贝叶斯生成模型,并发现该模型表现优于其他除choices13k之外的所有模型。 研究来源 此项研究发表于《Nature H...