单细胞RNA测序和机器学习揭示CD8+ T细胞与葡萄膜黑色素瘤转移的关系

2024年发表在《Cancer Cell International》上的《Machine Learning and Single-cell RNA Sequencing Reveal Relationship Between Intratumor CD8+ T Cells and Uveal Melanoma Metastasis》的学术报告 研究背景及目的 葡萄膜黑色素瘤(Uveal Melanoma, UM)是成人最常见的眼内恶性肿瘤。在接受放射治疗或手术治疗后,原发性UM的局部复发率较低。然而,约40%的患者在治疗后会出现远端转移,特别是在肝脏,导致高达50%的死亡率(4至5年内)。当前,针对UM转移风险的评估主要依赖多基因模型,这些模型多采用机器学习方法,基于基因表达谱(Gene ...

整合单细胞多组学分析揭示了HIV潜伏逆转的潜在调节因子

综合单细胞多组学HIV潜伏逆转研究揭示病毒再活化的全新调控因子 该篇题为《integrated single-cell multiomic analysis of hiv latency reversal reveals novel regulators of viral reactivation》的论文,由Manickam Ashokkumar、Wenwen Mei等多位研究者共同完成,分别来自于美国北卡罗来纳大学教堂山分校(University of North Carolina at Chapel Hill)和德州农工大学(Texas A&M University)等多家机构,并于2024年6月20日提前发表在《Genomics, Proteomics & Bioinformatics...

基于机器学习的自动化臂部运动异常评估研究

基于机器学习的自动化臂部运动异常评估研究

通过图像提取和分类系统对ABI患者行走异常运动的自动化临床评估 学术背景 获取性脑损伤(Acquired Brain Injury,ABI)后,行走障碍是一种常见的身体残疾。ABI通常包括中风和创伤性脑损伤,这些疾病在全球范围内的发生率约为150万例。ABI患者的行走障碍不只影响下肢,还会影响到躯干和上肢,从而限制日常生活的参与并大大降低生活质量。除了功能障碍外,这些明显的运动异常还可能产生美学问题,进而对患者的身体形象、自尊、心理健康和社会融合产生负面影响。 研究动机 传统的ABI患者运动异常评估通常依赖于经验丰富的理疗师通过视觉观察来进行主观评估。然而,国际功能、残疾与健康分类(ICF)中的运动异常评估卷标显示虽然在同一评估者之间有很强的一致性,但在不同评估者之间只能达到中等的信度,这限...

通过使用原型网络的单次迁移学习实现中风后手势识别

背景介绍 中风是全球死亡和致残的主要原因之一,随着人口老龄化和城镇化的发展,中风患者总数正在全球范围内增加。尽管治疗的进步降低了死亡率,但幸存者中需要康复治疗的人数却大幅增加。特别是在低收入和中低收入国家,这种情况尤其显著。这些国家的卫生资源有限,因此亟需一种适应性强、成本效益高的康复干预措施(Feigin et al. 2022)。 中风康复是一个漫长且负担沉重的过程,不仅耗费体力,还带来巨大的经济压力,因此自动化评估系统能够减轻康复费用和减少对物理治疗师访视需求的重要性愈发显著。这些系统通过传感器数据评估中风幸存者的运动功能,提供互动康复练习的低成本方法,尤其适合家庭康复(Chen et al. 2017)。此外,将游戏融入这些系统中可以增加中风幸存者的动机和参与度,通过使他们能够从事有...

用于脑肿瘤切除的基于机器学习的定量高光谱图像引导

用于脑肿瘤切除的基于机器学习的定量高光谱图像引导

机器学习辅助的定量高光谱成像在脑肿瘤切除中的指导作用研究 背景介绍 恶性胶质瘤的完全切除一直受到肿瘤细胞在浸润区难以区分的挑战。这项研究的背景是:在神经外科手术中,通过使用5-氨基乙酰丙酸(5-aminolevulinic acid,简称5-ALA),可以实现原卟啉IX(protoporphyrin IX,简称PPIX)的荧光引导,从而提高肿瘤的切除率。然而,即使在光谱成像的帮助下,许多低级别胶质瘤和一些高级别肿瘤由于PPIX的低积累,显示出较弱的荧光,这使得肿瘤更难区分。因此,了解不同类别肿瘤组织中的PPIX发射光谱,以及如何利用这些光谱进行分类,具有重要意义。 论文来源 这篇论文发表于《Communications Medicine》期刊(2024年),文章标题为“Towards mac...