GutBugDB:预测人类肠道微生物介导的生物和异生物分子生物转化的网络资源

近年来,人类肠道微生物群(Human Gut Microbiota, HGM)在药物和营养素代谢中的重要作用逐渐被认识到。肠道微生物群不仅影响口服药物的生物利用度,还通过其代谢酶参与药物和生物活性分子的生物转化(biotransformation),从而影响药物的药代动力学和药效学特性。然而,由于肠道微生物群的复杂性和个体间的差异性,确定特定微生物对药物和营养素代谢的具体贡献仍然是一个巨大的挑战。为了解决这一问题,研究人员开发了GutBugDB,这是一个开放获取的数字资源库,旨在预测人类肠道微生物群介导的生物和异生物质(xenobiotic)分子的生物转化。 论文来源 该研究由Usha Longwani、Ashok K. Sharma、Aditya S. Malwe、Shubham K. J...

GCLink:一种用于基因调控网络推断的图对比链接预测框架

研究背景 基因调控网络(Gene Regulatory Networks, GRNs)是理解细胞内复杂生物过程的关键工具。它揭示了转录因子(Transcription Factors, TFs)与靶基因之间的相互作用,从而控制基因的转录过程,进而调控细胞行为。随着单细胞RNA测序(single-cell RNA-sequencing, scRNA-seq)技术的发展,研究者能够在单细胞分辨率下获取基因表达数据,这为GRNs的推断提供了前所未有的机会。然而,scRNA-seq数据的稀疏性和高变异性为GRNs的推断带来了巨大挑战。 现有的GRN推断方法主要分为两类:基于相关性或互信息的无监督学习方法,以及基于机器学习的监督学习方法。尽管这些方法在某些情况下表现出色,但它们往往依赖于成对基因的相关...

基于机器学习的试验模拟评估肿瘤学试验结果在真实世界患者中的普适性

基于机器学习的肿瘤临床试验结果泛化性评估研究 学术背景 随机对照试验(Randomized Controlled Trials, RCTs)是评估抗癌药物疗效的黄金标准,但其结果往往难以直接推广到真实世界中的肿瘤患者。RCTs通常采用严格的入组标准,导致研究人群与真实世界的肿瘤患者群体存在显著差异。此外,RCTs中可能存在与患者预后风险相关的选择偏倚,进一步限制了试验结果的泛化性。为了解决这一问题,研究者们开发了名为TrialTranslator的框架,通过机器学习模型对真实世界中的肿瘤患者进行风险分层,并模拟RCTs,以系统评估试验结果的泛化性。 该研究旨在回答以下问题:真实世界中的肿瘤患者是否能够从RCTs中报告的生存获益中获益?不同预后风险的患者群体在生存时间和治疗获益方面是否存在显著...

基于短期运动任务的多尺度多层次特征评估框架用于帕金森病状态分类

学术背景 帕金森病(Parkinson’s Disease, PD)是第二常见的慢性神经退行性疾病,主要影响65岁及以上人群。随着全球人口老龄化的加剧,帕金森病的患病率预计将从2015年的700万增加到2040年的1300万。目前,帕金森病的诊断主要依赖于临床问卷和运动日记,这些方法耗时且存在较大的主观偏差。近年来,随着可穿戴技术和机器学习方法的结合,研究人员开始探索通过量化运动症状来辅助帕金森病的诊断。然而,这些技术的有效性受到环境设置的影响,难以在现实世界中广泛应用。因此,本研究旨在提出一种有效的特征评估框架,通过短期运动任务自动评估帕金森病运动症状的严重程度,并在现实世界中进行分类。 论文来源 该研究由来自University of Sheffield和Yunnan Universit...

PICU中儿童心率与体温关系的机器学习研究

儿童重症监护病房中心率与体温关系的机器学习研究 学术背景 在重症监护病房(PICU)中,心率(HR)和体温(BT)是关键的临床指标,能够反映患者的生理状态。尽管成年人中心率与体温的关系已被广泛研究,但在儿童群体中,特别是在PICU这一高风险环境中,相关研究仍然有限。儿童患者的生理特征与成年人存在显著差异,尤其是在0至18岁年龄段,心率随着年龄的增长而下降,而体温的变化则可能影响心率。然而,传统的线性模型在预测心率时往往存在局限性,尤其是在不同体温范围和年龄组中表现出低估或高估的现象。因此,探索心率、体温和年龄之间的复杂关系,对于改善PICU中的临床决策具有重要意义。 论文来源 本论文由Émilie Lu、Thanh-Dung Le、Philippe Jouvet和Rita Noumeir共同...