基于扭转流匹配的蛋白质侧链包装模型FlowPacker

蛋白质的三维结构由其氨基酸序列决定,而蛋白质的功能则高度依赖于其三维结构。蛋白质的侧链构象(side-chain conformations)在蛋白质折叠、蛋白质-蛋白质相互作用以及蛋白质设计(de novo protein design)中起着至关重要的作用。准确预测蛋白质侧链的构象是理解蛋白质折叠机制、设计新型蛋白质以及研究蛋白质相互作用的关键。然而,传统的基于物理的模型(physics-based modeling)依赖于经验评分函数(empirical scoring functions)、离散旋转库(discrete rotamer libraries)和马尔可夫链蒙特卡罗(MCMC)采样,这些方法往往由于搜索效率低下和评分函数的不准确性而难以达到理想的效果。 近年来,人工智能在蛋...

使用Transformer高效增强冷冻电镜密度图的研究:CryoTen

学术背景 冷冻电子显微镜(Cryo-EM)是解析大分子(如蛋白质)结构的重要实验技术。然而,Cryo-EM的有效性常常受到实验条件(如低对比度和构象异质性)导致的噪声和密度值缺失的制约。尽管现有的全局和局部图像锐化技术被广泛用于改善Cryo-EM密度图,但在高效提升其质量以构建更精确的蛋白质结构方面仍面临挑战。为了解决这一问题,研究人员开发了CryoTen,一种基于3D UNETR++风格Transformer的模型,旨在有效增强Cryo-EM密度图的质量。 论文来源 这篇论文由Joel Selvaraj、Liguo Wang和Jianlin Cheng共同撰写。Joel Selvaraj和Jianlin Cheng来自美国密苏里大学电气工程与计算机科学系,而Liguo Wang则来自布鲁克...

基于共享肽段的蛋白质和翻译后修饰的相对定量

在蛋白质组学研究中,质谱技术(Mass Spectrometry, MS)被广泛用于分析蛋白质的丰度和结构变化。然而,蛋白质的定量分析面临一个关键挑战:许多蛋白质共享相同的肽段(shared peptides),即这些肽段在多个蛋白质的序列中出现。传统的方法通常仅依赖于唯一肽段(unique peptides)进行蛋白质定量,忽略了共享肽段的信息,这可能导致定量结果的偏差或不准确。特别是在研究蛋白质异构体(protein isoforms)或翻译后修饰(post-translational modifications, PTMs)时,共享肽段的存在使得定量分析更加复杂。 为了解决这一问题,研究者们提出了一种新的统计方法,旨在利用共享肽段的定量信息,更准确地估计蛋白质的丰度和PTMs的位点占有...

基于信息熵增强BERT和多向GRU的S-硫化位点预测方法

背景介绍 蛋白质翻译后修饰(Post-Translational Modifications, PTMs)是调节细胞活动的关键机制,包括基因转录、DNA修复和蛋白质相互作用等。其中,半胱氨酸(Cysteine)作为稀有氨基酸,通过其硫醇基团(Thiol Group)参与多种PTMs,尤其是在氧化还原平衡和信号传递过程中发挥着重要作用。S-硫酰化(S-Sulfhydration)是一种重要的PTM,与心血管疾病和神经系统疾病的发生和发展密切相关。然而,S-硫酰化的具体机制仍不明确,尤其是在位点识别方面存在较大的挑战。 传统的S-硫酰化位点识别方法,如生物素转换法(Biotin Conversion Method)和马来酰亚胺荧光法(Maleimide Fluorescence Method),...

单细胞转录组学中的轨迹对齐:Tragedy方法的创新与应用

单细胞转录组测序(single-cell RNA sequencing, scRNA-seq)技术的出现,为研究细胞发育和分化过程中的基因表达动态提供了前所未有的分辨率。然而,由于生物过程的复杂性,不同条件下的细胞发育轨迹往往是不对称的,这给数据的整合和比较带来了挑战。现有的方法通常依赖于将不同条件下的样本整合后再进行聚类分析或推断共享轨迹,但这些方法在处理不对称轨迹时往往效果不佳,可能会掩盖关键的差异表达基因(differentially expressed genes, DEGs)。 为了解决这一问题,研究人员开发了一种新的方法——Trajectory Alignment of Gene Expression Dynamics (Tragedy)。Tragedy方法能够在不进行数据集整合...

SP-DTI:基于亚口袋信息的Transformer模型用于药物-靶点相互作用预测

学术背景 药物-靶点相互作用(Drug-Target Interaction, DTI)预测是药物发现中的关键环节,能够显著降低实验筛选的成本和时间。然而,尽管深度学习技术已经提升了DTI预测的准确性,现有方法仍面临两大挑战:泛化能力不足和亚口袋级相互作用的忽视。首先,现有模型在未见过的蛋白质和跨域设置下性能显著下降;其次,当前的分子关系学习往往忽略了亚口袋级别的相互作用,而这些相互作用对于理解结合位点的细节至关重要。为了解决这些问题,研究人员提出了一种名为SP-DTI的新型模型,通过引入亚口袋分析和预训练语言模型,提升了DTI预测的准确性和泛化能力。 论文来源 这篇论文由Sizhe Liu、Yuchen Liu、Haofeng Xu、Jun Xia和Stan Z. Li共同撰写。他们分别来...