基于CNN与扩张采样自注意力和特征交互Transformer的ABVS乳腺肿瘤分割

基于CNN与Dilated Sampling Self-Attention的ABVS乳腺肿瘤分割研究 学术背景 乳腺癌是全球范围内第二大常见癌症,早期和准确的检测对于改善患者预后和降低死亡率至关重要。尽管目前有多种成像技术(如X线乳腺摄影、磁共振成像和手持超声)被用于乳腺癌的早期筛查,但这些技术往往面临分辨率有限或操作依赖性强等问题。为了解决这些问题,自动化乳腺容积扫描仪(Automated Breast Volume Scanner, ABVS)应运而生。ABVS能够自动获取整个乳房的全面视图,但其图像分析仍然具有挑战性,主要由于乳腺肿瘤在大小、形状和位置上的显著差异。近年来,深度学习在医学图像分析中取得了显著进展,尤其是卷积神经网络(CNN)和变换器(Transformer)在肿瘤分割和...

利用深度学习量化与神经认知变化相关的大脑老化速度

随着全球老龄化问题的加剧,神经退行性疾病(如阿尔茨海默病,Alzheimer’s Disease, AD)的发病率逐年上升。大脑老化(Brain Aging, BA)是神经退行性疾病的重要风险因素之一,但其与生理年龄(Chronological Age, CA)并不完全一致。传统的大脑老化评估方法主要依赖于DNA甲基化时钟,然而,这种方法无法直接反映大脑组织的老化情况,因为血脑屏障(Blood-Brain Barrier)将血液中的细胞与脑细胞分隔开来。因此,如何通过非侵入性手段准确评估大脑老化速度(Pace of Brain Aging, P)成为了一个重要的研究课题。 本研究旨在通过深度学习技术,利用纵向磁共振成像(Longitudinal MRI)数据,开发一种能够量化大脑老化速度的模...

DEISM:基于自校准机制的深度重建框架在加速化学交换饱和转移成像中的应用

基于自校准机制的深度重建框架(DEISM)在加速化学交换饱和转移成像中的应用 学术背景 化学交换饱和转移(Chemical Exchange Saturation Transfer, CEST)成像是一种高灵敏度的分子磁共振成像技术,能够检测与多种疾病(如癌症、癫痫和卒中)相关的生物分子。然而,CEST成像的一个主要缺点是扫描时间过长,这是由于需要在不同的饱和频率偏移下进行多次数据采集。长时间的扫描限制了CEST成像在临床中的广泛应用。为了解决这一问题,研究者们致力于开发加速CEST成像的技术,主要通过利用数据中的冗余信息,从欠采样的k空间数据中重建图像。 尽管现有的并行成像和压缩感知(Compressed Sensing, CS)技术在一定程度上加速了CEST成像,但这些方法仍存在局限性。...

基于多分辨率信号小波网络的语音情感识别研究

多分辨率信号小波网络在语音情感识别中的应用:SigWavNet 学术背景 语音情感识别(Speech Emotion Recognition, SER)在人机交互和心理学评估中扮演着重要角色。它通过分析语音信号来识别说话者的情感状态,广泛应用于紧急呼叫中心、健康护理和虚拟AI助手等领域。然而,尽管该领域取得了显著进展,系统复杂性、特征区分度不足以及噪声干扰等问题仍然存在。为了解决这些挑战,来自University of Québec、Concordia University和University of Québec at Montréal的研究团队提出了一种新的端到端深度学习框架——SigWavNet,直接从语音波形信号中提取有意义的特征,并通过多分辨率分析提升情感识别的准确性。 论文来源 ...

基于频谱-时间调制特征的双流鲁棒语音情感识别

基于频谱-时间调制特征的双流鲁棒语音情感识别研究 学术背景 语音情感识别(Speech Emotion Recognition, SER)是通过分析人类语音中的情感内容来识别情绪的技术。它在人机交互、客户服务管理系统以及医疗等领域具有广泛的应用潜力。然而,尽管基于深度学习的SER模型在受控环境中表现出色,但在真实环境中的噪声条件下,其性能显著下降。噪声(如交通噪声、风扇噪声等)会严重干扰语音信号,导致情感识别系统的准确性大幅降低。因此,开发一种在噪声环境下依然鲁棒的SER系统成为了一个重要的研究方向。 传统的SER系统通常依赖于梅尔频率倒谱系数(Mel-Frequency Cepstral Coefficients, MFCC)和梅尔频谱图等声学特征。然而,这些特征在噪声环境下容易受到干扰,...